tính
\(\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
\(\frac{2^{15}.9^4}{6^3.8^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\frac{2^{12}.3^{10}+\left(2.3\right)^9.2^3.3.5}{2^{12}.3^{12}-\left(2.3\right)^{11}}\)
\(=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{\left(2^{12}.3^{10}\right)\left(1+5\right)}{\left(2^{11}.3^{11}\right)\left(2.3-1\right)}\)
\(=\frac{\left(2^{12}.3^{10}\right).6}{\left(2^{11}.3^{11}\right).5}\)
\(=\frac{2.6}{3.5}\)
\(=\frac{2.2}{5}\)
\(=\frac{4}{5}\)
\(b,\) \(\frac{2^{15}.9^4}{6^3.8^3}\)
\(=\frac{2^{15}.3^8}{2^3.3^3.2^9}\)
\(=\frac{2^{15}.3^8}{2^{12}.3^3}\)
\(=2^3.3^5\)
\(=8.243\)
\(=1944\)
Chúc bạn học tốt ^^
a) \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+6^9.120}{\left(2^3\right)^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}+6^9.120}{2^{12}.3^{12}-6^{11}}=\frac{6^{10}.4+6^{10}.20}{6^{12}-6^{11}}=\frac{6^{10}.\left(4+20\right)}{6^{11}.\left(6-1\right)}=\frac{6^{11}.4}{6^{11}.5}=\frac{4}{5}\)
b) \(\frac{2^{15}.9^4}{6^3.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^3.3^3.2^9}=\frac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5=1944\)
c) \(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(4.2\right)^{10}+4^{10}}{\left(2^3\right)^4+4^6.4^5}=\frac{4^{10}.2^{10}+4^{10}}{2^{12}+4^6.4^5}=\frac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.2^{10}}=\frac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(1+2^{10}\right)}=\frac{4^{10}}{4^6}=4^4=256\)
Câu 1:\(\frac{45^{10}.5^{10}}{75^{10}}\) = \(\frac{\left(5.9\right)^{10}.5^{10}}{\left(5.5.3\right)^{10}}\) = \(\frac{5^{10}.9^{10}.5^{10}}{5^{10}.5^{10}.3^{10}}\) = \(\frac{9^{10}}{3^{10}}\) = \(\frac{3^{10}.3^{10}}{3^{10}}\) = \(3^{10}\) = 59049
Câu 2:\(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}\) = \(\frac{\left(0,4.2\right)^5}{\left(0,4\right)^6}\) = \(\frac{\left(0,4\right)^5.2^5}{\left(0,4\right)^6}\) = \(\frac{2^5}{0,4}\) = \(\frac{32}{0,4}\) = 80
Câu 3:\(\frac{2^{15}.9^4}{6^3.8^3}\) = \(\frac{2^{15}.3^8}{2^{12}.3^3}\) = \(\frac{2^3.3^5}{1.1}\) = \(\frac{8.243}{1}\) = 1944
Câu 4: \(\frac{8^{10}+4^{10}}{8^4+4^{11}}\) = \(\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}\) = \(\frac{2^{30}+2^{20}}{2^{12}+2^{22}}\) = \(\frac{2^{20}.2^{10}+2^{20}}{2^{12}+2^{12}.2^{10}}\) = \(\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}\) = \(\frac{2^{20}}{2^{12}}\) = \(\frac{2^8}{1}\) = \(2^8\) = 256
a, \(\frac{2^{15}.\left(-9\right)^4}{-6^3.8^3}=\frac{2^{15}.\left(-3.3\right)^4}{-\left(2.3\right)^3.\left(2^3\right)^3}=\frac{2^{15}.3^4.3^4}{-2^3.3^3.2^9}=\frac{2^{15}.3^8}{-2^{12}.3^3}=\frac{2^3.3^5}{-1}=-8.243=-1944\)
b, \(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}=\frac{2^{20}}{2^{12}}=\frac{1}{2^8}=\frac{1}{256}\)
\(\frac{2^{15}.9^4}{6^3.8^3}\)=\(\frac{2^{15}.\left(3^2\right)^3}{\left(2.3\right)^3.\left(2^3\right)^3}\)=\(\frac{2^{15}.3^6}{2^3.3^3.2^9}\)=\(\frac{2^{15}.3^6}{2^{12}.3^3}\)=\(2^3.3^3\)=8.27=216
\(\dfrac{\text{45^{10^{ }}}.5^{10}}{75^{10}}=\dfrac{9^{10}.5^{10}.5^{10}}{5^{10}.5^{10}.3^{10}}=\dfrac{9^{10}}{3^{10}}=3^{10}\)
\(\dfrac{\left(0,8\right)^5}{\left(0,4\right)^6}=\dfrac{2^5.\left(0,4\right)^5}{\left(0,4\right)^6}=\dfrac{2^5}{0,4}=\dfrac{32}{0,4}=80\)
\(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}.\left(2^{10}+1\right)}{2^{12}.\left(1+2^{10}\right)}=\frac{2^{20}}{2^{12}}=2^{20-12}=2^8\)
\(\frac{2^{15}.9^4}{6^3.8^3}=\frac{2^{15}.\left(3^2\right)^4}{2^3.3^3.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^3.3^3.2^9}=\frac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5=8.243=1944\)