Tìm STN x,y sao cho :x/3-4/y=1/5 Mik đng cần gấp ,giải chi tiết ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có bảng sau:
x-1 | -5 | 5 | 1 | -1 |
y+4 | -1 | 1 | 5 | -5 |
x | -4 | 6 | 2 | 0 |
y | -5 | -3 | 1 | -9 |
Vậy:
b) Ta có bảng sau:
2x+3 | 11 | -11 | 1 | -1 |
y-2 | 1 | -1 | 11 | -11 |
x | 4 | -7 | -1 | -2 |
y | 3 | 1 | 13 | -9 |
Vậy: ...
`@` `\text {Ans}`
`\downarrow`
`a)`
`(x-1)(y+4) = 5`
`=> (x-1)(y+4) \in \text {Ư(5)} = +-1; +-5`
Ta có bảng sau:
\(x-1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y+4\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
\(x\) | `2` | `6` | `0` | `-4` |
`y` | `-9` | `-5` | `1` | `-8` |
Vậy, ta có các cặp `x,y` thỏa mãn `{2; -9}; {6; -5}; {0; 1}; {-4; -8}`
(2x+1)(y-5)=12
Vì x,y \(\in N\)
=> 2x+1;y-5 \(\in N\)
=> 2x+1, y-5 \(\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Vì 2x+1 là số lẻ => \(2x+1\in\left\{\pm1;\pm3\right\}\)
Xét bảng
2x+1 | 1 | -1 | 3 | -3 |
y-5 | 12 | -12 | 4 | -4 |
x | 0 | -1(ko tm) | 1 | -2( ko tm) |
y | 17 | 4 | 9 | 1 |
Vậy các cắp (x,y) tm là (0;17), (1;9)
\(\dfrac{x}{9}-\dfrac{3}{y}=\dfrac{1}{18}\left(ĐKXĐ:y\ne0\right)\)
\(\Rightarrow\dfrac{xy-27}{9y}=\dfrac{1}{18}\)
\(\Rightarrow18\left(xy-27\right)=9y\)
\(\Rightarrow2\left(xy-27\right)=y\)
\(\Rightarrow2xy-54=y\)
\(\Rightarrow2xy-y=54\Rightarrow y\left(2x-1\right)=54\)
\(\Rightarrow y=\dfrac{54}{2x-1}\)
- Suy ra 54 chia hết cho 2x - 1
\(\Rightarrow2x-1\inƯ\left(54\right)\)
\(\Rightarrow2x-1\in\left\{1;-1;2;-2;3;-3;9;-9;27;-27\right\}\)
Cho 2x - 1 bằng từng giá trị ở trên, ta tìm được :
\(x\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2};2;-1;5;-4;14;-13\right\}\). Mà x không có giá trị ngoài tập số nguyên.
\(\Rightarrow x\in\left\{-13;-4;-1;0;1;2;5;14\right\}\)
Thay các giá trị x trên vừa tìm được vào y :
\(\Rightarrow y\in\left\{54;-54;18;-18;6;-6;2;-2\right\}\)
Vậy : Các số x và y thỏa mãn đề bài là : \(\left(x;y\right)\in\left\{\left(1;54\right),\left(0;-54\right),\left(2;18\right),\left(-1;-18\right),\left(5;6\right),\left(-4;-6\right),\left(14;2\right),\left(-13;-2\right)\right\}\)
Do (x + 1).(y - 2) = 3
=> 3 chia hết cho x + 1; 3 chia hết cho y - 2
Mà x,y là số tự nhiên => \(x+1\ge1;y-2\ge-2\)
=> \(\hept{\begin{cases}x+1=1\\y-2=3\end{cases};\hept{\begin{cases}x+1=3\\y-2=1\end{cases}}}\)
=> \(\hept{\begin{cases}x=0\\y=5\end{cases};\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
a) \(\left(x-\frac{1}{3}\right)^2-\frac{1}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=\frac{1}{4}\)
\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=\left(\frac{1}{2}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{1}{2}\\x-\frac{1}{3}=\frac{-1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{6}\\x=\frac{-1}{6}\end{cases}}}\)
Vậy x= 5/6 hoặc -1/6
b) - Nếu x=0 thì \(5^y=2^0+624=1+624=625=5^4\Rightarrow y=4\left(y\in N\right)\)
- Nếu x \(\ne\) 0 thì vế trái là số chẵn , vế phải là số lẻ \(\forall x;y\inℕ\) ( vô lí)
Vậy x=0, y=4
x/y = 2/5 ⇒ x/2 = y/5
⇒ x/5 = 2y/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/2 = 2y/10 = (x + 2y)/(2 + 10) = 36/12 = 3
x/2 = 3 ⇒ x = 2 . 3 = 6
y/5 = 3 ⇒ y = 5 . 3 = 15
Vậy x = 6; y = 10
$\dfrac{x}{3} - \dfrac{4}{y} = \dfrac{1}{5}$
$⇔ \dfrac{xy -12}{3y} = \dfrac{1}{5}$
$⇔ 5(xy - 12) = 3y$
$⇔ 5xy - 60 = 3y$
$⇔ 5xy + 3y = 60$
$⇔ y(5x + 3) = 60 = 1.60 = 60.1 = 2.30 = 30.2 = 12.5 = 5.12 = 4.15 = 15.4 $
loại
Vậy không có giá trị x, y thoả mãn
Ta có:
\(\dfrac{x}{3}-\dfrac{4}{y}=\dfrac{1}{5}\)
<=> \(\dfrac{x}{3}-\dfrac{1}{5}=\dfrac{4}{y}\)
<=>\(\dfrac{5x-3}{15}=\dfrac{4}{y}\)
<=>\(\left(5x-3\right)y=60\)
Mặt khác:
60 = 1.60 = 2.30 = 3.20 = 4.15 = 5 . 12 = 6.10
y là số tự nhiên nên 5x - 3 cũng phải là số tự nhiên.
giả sử 5x - 3 = n thì n + 3 chia hết cho 5, dó đó:
5x - 3 = 2 hoặc 5x - 3 = 12.
TH1:
Với 5x - 3 = 2 => x =1 và y = 30
TH2: 5x - 3 = 12 => x = 3 và y = 5
Vậy có 2 cặp số tự nhiên (x;y) thõa mãn đầu kiện bài toán là (1;30);(3;5)