CMR: Với mọi n\(\in\)N thì hai số 14n+3 và 7n+4 là hai số nguyên tố cùng nhau
ai tk tớ tớ tk lại
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (14n+3,21n+4)=d (d thuộc N)
=>14n+3,21n+4 chia hết cho d
=>3(14n+3)-2(21n+4)=1 chia hết cho d
=>d=1
Vậy 14n+3 và 21n+4 là hai số nguyên tố cùng nhau với mọi số tự nhiên n
Không biết thế này có đúng không nhưng mình vẫn muốn hỏi
Gọi d là WCLN(2n+3, 3m+4); n thuộc N
Ta có: 2n+3 chia hết cho d; 3m+4 chia hết cho d
3(2n+3) chia hết cho d; 2(3m+4) chia hết cho d
nên (6m+9-6n+8)
=> d chia hết cho 1
=> d=1
Giải :
Gọi d là ƯCLN của 7n+10 và 5n+7
=> 7n + 10 chia hết cho d ; 5n + 7 chia hết cho d
=> 35n + 50 chia hết cho d ;35n + 49 chia hết cho d
=> ( 35n + 50 - 35n + 49 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
~ HT ~
Gọi m là ƯCLN(7n + 10, 5n + 7)
=>\(\hept{\begin{cases}7n+10⋮m\\5n+7⋮m\end{cases}}\)
=>\(\hept{\begin{cases}5\left(7n+10\right)⋮m\\7\left(5n+7\right)⋮m\end{cases}}\)
=> \(\hept{\begin{cases}35n+50⋮d\\35+49⋮d\end{cases}}\)
=> (35n + 50) - (35n + 49) \(⋮\)d
=> 1 chia hết cho d
=> d = 1
K/l: Vậy 7n + 10 và 5n + 7 là số nguyên tố cùng nhau
Saii srr bn
Gọi d là UCLN(2n+1;14n+5)
->(14n+5)-(2n+1)chia hết cho d
->(14n+5)-7(2n+1) chia hết cho d
->14n+5-14n-1 chia hết cho d
->n+5-n-1
4 chia hết cho d
d thuộc {1;-1;2;-2;4;-4}
Sau đó thì bạn dùng phương pháp thử chọn nha.
a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3
Gọi ước chung lớn nhất của 2k+1 và 2k+3 là d
=> 2k+1 chia hết cho d; 2k+3 chia hết cho d
=> (2k+1 - 2k-3) chia hết cho d
=> -2 chia hết cho d
=> d thuộc Ư(-2) => d thuộc {-2; -1; 1; 2}
mà d lớn nhất; số tự nhiên lẻ không chia hết cho 2 => d = 1
=> 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
b) Gọi ƯCLN(2n+5;3n+7) là d
=> 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n+15 chia hết cho d
3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d
=> (6n+15-6n-14) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
mà d lớn nhất => d = 1
=> 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Gọi (14n+3,21n+4)=d (d thuộc N)
=>14n+3,21n+4 chia hết cho d =>3(14n+3)-2(21n+4)=1 chia hết cho d
=>d=1
Vậy 14n+3 và 21n+4 là hai số nguyên tố cùng nhau với mọi số tự nhiên
b)Gọi UCLN(2n+3;4n+8) là d
Ta có:2n+3 chia hết cho d
4n+8 chia hết cho d
=>2(2n+3) chia hết cho d
1(4n+8)chia hết cho d
=>4n+6 chia hết cho d
4n+8 chia hết cho d
4n+8 -(4n+6) chia hết cho d
2 chia hết cho d
=>d thuộc {1;2} mà 2n+3 không chia hết cho 2
=>d=1
Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau.
Tick câu thứ 2 nha!Nếu không hiểu bạn nhắn tin hỏi mình nhé!
Gọi d = UCLN(14n+3; 7n+4)
Ta có: n\(\in\)N; (14n+3; 7n+4) chia hết cho d
[2(7n+4)-14n+3] chia hết cho d
=>14n+8-14n+3 chia hết cho d
=> 5 chia hết cho d
=> d=1;5
Vậy hai số ...................... là hai số nguyên tố cùng nhau
Học giỏi nhỉ
đúng rồi đây tk mik nha mik tk lại