K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2016

N= 1 duy nhất

28 tháng 12 2016

n.(1+2)=3

n.3=3

n=3:3

n=1

Vậy n=1

\(\Leftrightarrow3\left(2n+3\right)⋮3n+1\)

\(\Leftrightarrow6n+9⋮3n+1\)

\(\Leftrightarrow6n+2+7⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;7\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;2\right\}\)

30 tháng 1 2022

\(\left(2n+3\right)⋮\left(3n+1\right)\)

\(\Rightarrow3\left(2n+3\right)⋮\left(3n+1\right)\)

\(\Rightarrow\left(6n+9\right)⋮\left(3n+1\right)\)

\(\Rightarrow\left(6n+2+7\right)⋮\left(3n+1\right)\)

\(\Rightarrow7⋮\left(3n+1\right)\)

\(\Rightarrow\left(3n+1\right)\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)

\(\Rightarrow n\in\left\{0;-\dfrac{2}{3};2;-\dfrac{8}{3}\right\}\)

Mà \(n\in N\)

\(\Rightarrow n\in\left\{0;2\right\}\)

Vậy \(n\in\left\{0;2\right\}\) thì \(\left(2n+3\right)⋮\left(3n+1\right)\)

11 tháng 3 2018

Đáp án cần chọn là: A

+ Nhân cả tử và mẫu của A với 2.4.6.....40 ta được:

A = 1.3.....39 . 2.4.....40 2.4.6.....40 . 21.22.....40 = 1.2.3.....39.40 2.1 . 2.2 . 2.3 ..... 2.20 . 21.22.....40 = 1.2.3.....39.40 2 20 . 1.2.3.....20.21.22.....40 = 1 2 20

+ Nhân cả tử và mẫu của B với 2.4.6.....2n ta được:

B = 1.3..... 2 n − 1 . 2.4.....2 n 2.4.6.....2 n . n + 1 . n + 2 .....2 n = 1.2.3..... 2 n − 1 .2 n 2.1 . 2.2 . 2.3 ..... 2. n . n + 1 . n + 2 .....2 n = 1.2.3..... 2 n − 1 .2 n 2 n . 1.2.3..... n . n + 1 . n + 2 .....2 n = 1 2 n

Vậy  A = 1 2 20 , B = 1 2 n

9 tháng 9 2017

Ta có 1 n − 1 − 1 n = n − n + 1 n − 1 n = 1 n 2 − n . Do n 2 − n < n 2 ⇒ 1 n 2 − n > 1 n 2 ⇒ 1 n − 1 − 1 n > 1 n 2  

Tương tự 1 n − 1 n + 1 = n + 1 − n n + 1 n = 1 n 2 + n . Do  n 2 + n > n 2 ⇒ 1 n 2 + n < 1 n 2 ⇒ 1 n − 1 n + 1 < 1 n 2

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

4 tháng 9 2023

cảm on ha

11 tháng 11 2023

Có: 1n + 2n + 3n + 4n

= (1 + 2 + 3 + 4)n

= 10n

Vì 10 ⋮ 5 nên 10n ⋮ 5 (n ∈ N)

Vậy để 1n + 2n + 3n + 4n chia hết cho 5 thì n ∈ N.

11 tháng 11 2023

Để 1n + 2n + 3n + 4n chia hết cho 5, ta cần tìm số tự nhiên n sao cho tổng này chia hết cho 5.

Ta có: 1n + 2n + 3n + 4n = 10n

Để 10n chia hết cho 5, ta cần n chia hết cho 5.

Vậy, số tự nhiên n cần tìm là các số chia hết cho 5.

 ⇒ Các số tự nhiên n chia hết cho 5.

--thodagbun--

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Lời giải:
$A=1^n+2^n+3^n+4^n=1+2^n+3^n+4^n$

Nếu $n=4k$ thì:

$A=1+2^n+3^n+4^n=1+2^{4k}+3^{4k}+4^{4k}$

$=1+16^k+81^k+16^{2k}$

$\equiv 1+1+1+1\equiv 4\pmod 5$

---------------

Nếu $n=4k+1$

$A=1+2^n+3^n+4^n=1+2^{4k+1}+3^{4k+1}+4^{4k+1}$

$=1+16^k.2+81^k.3+16^{2k}.4$

$\equiv 1+1^k.2+1^k.3+1^k.4\equiv 10\equiv 0\pmod 5$

Nếu $n=4k+2$

$A=1+2^n+3^n+4^n=1+2^{4k+2}+3^{4k+2}+4^{4k+2}$

$=1+16^k.2^2+81^k.3^2+16^{2k}.4^2$

$\equiv 1+1^k.2^2+1^k.3^2+1^{2k}.4^2\equiv 30\equiv 0\pmod 5$

Nếu $n=4k+3$

$A=1+2^n+3^n+4^n=1+2^{4k+3}+3^{4k+3}+4^{4k+3}$

$=1+16^k.2^3+81^k.3^3+16^{2k}.4^3$

$\equiv 1+1^k.2^3+1^k.3^3+1^{2k}.4^3\equiv 100\equiv 0\pmod 5$

Vậy chỉ cần $n$ không chia hết cho $4$ thì $1^n+2^n+3^n+4^n$ sẽ chia hết cho $5$

27 tháng 10 2019

Đáp án đúng : D

10 tháng 1 2018

a: Gọi d=ƯCLN(2n+2;2n+3)

=>2n+3-2n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+2 và 2n+3 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(2n+1;n+1)

=>2n+1 chia hết cho d và n+1 chia hết cho d

=>2n+2 chia hết cho d và 2n+1 chia hết cho d

=>2n+2-2n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

 

13 tháng 8 2023

cái bên dưới viết thiếu chữ c chứ đó là phần c