tìm x thuộc z
(x2_2).(x2_10) nhỏ hơn hoặc bằng 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8\le\left|x+2\right|\le10\)
\(\Leftrightarrow\left|x+2\right|\in\left\{8,9,10\right\}\)(vì \(x\inℤ\))
\(\Leftrightarrow x+2\in\left\{-10,-9,-8,8,9,10\right\}\)
\(\Leftrightarrow x\in\left\{-12,-11,-10,6,7,8\right\}\)
Nếu vậy thì PT có rất nhiều nghiệm
|x + 35 - 40| + |y +10 - 11| \(\le\) 0 chứ
\(2\le\left|x\right|\le5\)
\(\Rightarrow\left|x\right|\ge0\)
Mà \(2\le\left|x\right|\le5\Rightarrow x\in\left\{\pm2;\pm3;\pm4;\pm5\right\}\)
Vậy :
Ta có: |x+45-40|+|y+10-11|>=0(với mọi x,y)
mà |x+45-40|+|y+10-11|<=0(theo đề)
Nên dấu '=' chỉ xảy ra khi:
x+45-40=0 và y+10-11=0
x+5=0 y-1=0
x=0-5 y=0+1
x=-5 y=1
Vậy x=-5 và y=1
a) /x-2/ nhỏ hơn hoặc bằng 2
vì /a/ \(\ge\)0
mà /x-2/\(\le\)2
\(\Rightarrow\)/x-2/={0;1;2}
Nếu /x-2/=0
x-2 =0
\(\Rightarrow\)x=2
Nếu /x-2/=1
x-2 =1
\(\Rightarrow\)x=3
Nếu /x-2/=2
x-2 =2
\(\Rightarrow\)x=4
Vì x\(\in\)Z nên x={2;3;4}
b) /x-3/ nhỏ hơn hoặc bằng 0
Vì /a/\(\ge\)0
mà /x-3/\(\le\)0
nên /x-3/=0
x-3 =0
\(\Rightarrow\)x=3
1) Giải theo cách lớp 8 nhé:
Áp dụng BĐT (a + b)² >= 4ab (với a,b là các số không âm). Dấu "=" xảy ra khi a = b. C/m đơn giản thôi, bạn chuyển vế đưa về hằng đẳng thức đúng.
(x + y)² >= 4xy
(y + z)² >= 4yz
(x + z)² >= 4xz
Nhân theo vế 3 BĐT trên có: (x + y)²(y + z)²(x + z)² >= 64x²y²z²
=> (x + y)(y + z)(z + x) >= 8xyz (vì x,y,z >= 0)
2) ĐK để các phân thức có nghĩa: a + b; b + c; c +a khác 0.
Ta có: a²/(a +b) + b²/(b + c) + c²/(c + a) = b²/(a +b) + c²/(b + c) + a²/(c + a) (*)
<=> a²/(a +b) + b²/(b + c) + c²/(c + a) - b²/(a +b) - c²/(b + c) - a²/(c + a) = 0
<=> (a² - b²)/(a + b) + (b² - c²)/(b + c) + (c² - a²)/(c + a) = 0
<=> (a - b)(a + b)/(a + b) + (b - c)(b + c)/(b + c) + (c - a)(c + a)/(c + a) = 0
<=> a - b + b - c + c - a = 0
<=> 0 = 0 (1)
Có -13<x+12<8
Xét -13<x+12
x>-25 (1)
Xét x+12<8
x<-4 (2)
Từ (1) + (2)
-25<x<-4 (lớn/nhỏ hơn hoặc = nhà bạn
Để \(\left(x^2-2\right)\left(x^2-10\right)\le0\)
=> Có 2 trường hợp , ta có :
\(\left(1\right)\hept{\begin{cases}x^2-2\le0\\x^2-10\ge0\end{cases}\Rightarrow\hept{\begin{cases}x^2\le2\\x^2\ge10\end{cases}}\Rightarrow x\in O}\)
\(\left(2\right)\hept{\begin{cases}x^2-2\ge0\\x^2-10\le0\end{cases}\Rightarrow\hept{\begin{cases}x^2\ge2\\x^2\le10\end{cases}\Rightarrow2\le x^2\le}10}\)
=> x = {2 ; 3}
x có thuộc 0 ko bạn