K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì dãy số trên có 100 lũy thừ => ta có thể chia 100 lũy thùa thành các nhốm, mỗi nhóm 2 lũy thừa ( điều này rất cần thiết cho bài toán đấy bạn nhá )

Có : B = \(\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{99}+3^{100}\right)\)

=> B = \(\left(3.1+3.3\right)+\left(3^3.1+3^3.3\right)+...+\left(3^{99}.1+3^{99}.3\right)\)

=> B = \(3.\left(3+1\right)+3^3.\left(3+1\right)+...+3^{99}.\left(3+1\right)\)

=> B = \(3.4+3^3.4+...+3^{99}.4\)

=> B = \(4.\left(3+3^3+...+3^{99}\right)\)

=> B chia hết cho 4 Vì khi một tích có thừa số 4 thì tích đó luôn chia hết cho 4

28 tháng 12 2016

Ta có : B = 3 + 32 + 33 + ....... + 3100

=> B = (3 + 32) + (33 + 34) + ....... + (399 + 3100)

=> B = 3.(1 + 3) + 33.(1 + 3) + ...... + 399.(1 + 3)

=> B = 3.4 + 33.4 + ...... + 399.4

=> B = 4.(3 + 33 + ...... + 399) chia hết cho 4 (đpcm)

Đây là toán 6 nha bạn

AH
Akai Haruma
Giáo viên
30 tháng 6

Lời giải:

$B=3+3^2+(3^3+3^4+3^5)+(3^6+3^7+3^8)+....+(3^{1989}+3^{1990}+3^{1991})$

$=12+3^3(1+3+3^2)+3^6(1+3+3^2)+...+3^{1989}(1+3+3^2)$

$=12+(1+3+3^2)(3^3+3^6+...+3^{1989})$

$=12+13(3^3+3^6+...+3^{1989})$

$\Rightarrow B$ chia $13$ dư $12$.

 

AH
Akai Haruma
Giáo viên
30 tháng 6

2/

$B=3+3^2+3^3+...+3^{1991}$

$3B=3^2+3^3+3^4+...+3^{1992}$
$\Rightarrow 3B-B=3^{1992}-3$

$\Rightarrow 2B=3^{1992}-3$

Có:

$3^4\equiv -1\pmod {41}$

$\Rightarrow 3^{1992}=(3^4)^{498}\equiv (-1)^{498}\equiv 1\pmod {41}$

$\Rightarrow 3^{1992}-3\equiv 1-3\equiv -2\pmod {41}$

$\Rightarrow 2B\equiv -2\pmod {41}$

$\Rightarrow 2B\not\vdots 41$

$\Rightarrow B\not\vdots 41$.

 

19 tháng 10 2018

a)\(B=3+3^2+3^3+....+3^{30}\)

\(\Rightarrow3B=3^2+3^3+3^4+...+3^{31}\)

\(\Rightarrow3B-B=\left(3^2+3^3+3^4+...+3^{31}\right)-\left(3+3^2+3^3+....+3^{30}\right)\)

\(\Rightarrow2B=3^{31}-3\)

\(\Rightarrow B=\frac{3^{31}-3}{2}\)

b) \(B=3+3^2+3^3+3^4+...+3^{30}\)

         \(=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{29}+3^{30}\right)\)

           \(=3.\left(1+3\right)+3^3.\left(1+3\right)+....+3^{29}.\left(1+3\right)\)

             \(=4.\left(3+3^3+.....+3^{29}\right)⋮4\)

Vậy B chia hết cho 4

2 tháng 8 2019

                                                     Bài giải

              Ta có : 

\(1+3+3^2+3^3+3^4+...+3^9\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{98}+3^{99}\right)\)

\(=4+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^{98}\left(1+3\right)\)

\(=4+3^2\cdot4+3^4\cdot4+...+3^{98}\cdot4\)\(⋮\text{ }4\)

\(\Rightarrow\text{ ĐPCM}\)

2 tháng 8 2019

                                       Bài giải

      \(1+3+3^2+3^3+3^4+...+3^9\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{98}+3^{99}\right)\)

\(=4+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^{98}\left(1+3\right)\)

\(=4+3^2\cdot4+3^4\cdot4+...+3^{98}\cdot4\)\(⋮\text{ }4\)

\(\Rightarrow\text{ ĐPCM}\)

31 tháng 12 2022

b: B=3(1+3)+3^3(1+3)+...+3^2009(1+3)

=4(3+3^3+...+3^2009) chia hết cho 4

B=3(1+3+3^2)+3^4(1+3+3^2)+...+3^2008(1+3+3^2)

=13(3+3^4+...+3^2008) chia hết cho 13

c: \(C=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2009}\left(1+5\right)\)

\(=6\left(5+5^3+...+5^{2009}\right)⋮6\)

\(C=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)

\(=31\left(5+5^4+...+5^{2008}\right)⋮31\)

d: \(D=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{2009}\left(1+7\right)\)

\(=8\left(7+7^3+...+7^{2009}\right)⋮8\)

\(D=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)

\(=57\left(7+7^4+...+7^{2008}\right)⋮57\)

20 tháng 10 2018

ử dụng phương pháp phản chứng 
giả sử n chia hết cho 5 
=>n có dạng 5k 
=>n^2+n+1=25k^2+5k+1=5k(5k+1)+1 
ta có 5k(5k+1) chia hết cho 5 mà 1 ko chia hết cho 5 
=>25k^2+5k+1 ko chia hết cho 5 (đpcm)

8 tháng 11 2023

a) Đặt A = \(6^5.5-3^5\)

\(=\left(2.3\right)^5.5-3^5\)

\(=2^5.3^5.5-3^5\)

\(=3^5.\left(2^5.5-1\right)\)

\(=3^5.\left(32.5-1\right)\)

\(=3^5.159\)

\(=3^5.3.53⋮53\)

Vậy \(A⋮53\)

b) Đặt \(B=2+2^2+2^3+...+2^{120}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)

\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{119}.\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{119}.3\)

\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy \(B⋮3\)

\(B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2\right)+3^4.\left(1+2+2^2\right)+...+2^{118}.\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{118}.7\)

\(=7.\left(2+2^4+...+2^{118}\right)⋮7\)

Vậy \(B⋮7\)

\(B=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)

\(+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)

\(+2^{116}.\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+2^6.31+...+2^{116}.31\)

\(=31.\left(2+2^6+...+2^{116}\right)⋮31\)

Vậy \(B⋮31\)

\(B=\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}+2^{16}\right)\)

\(+...+\left(2^{113}+2^{114}+2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)+2^9.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)

\(+...+2^{113}.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)

\(=2.255+2^9.255+...+2^{113}.255\)

\(=255.\left(2+2^9+...+2^{113}\right)\)

\(=17.15.\left(2+2^9+...+2^{113}\right)⋮17\)

Vậy \(B⋮17\)

8 tháng 11 2023

c) Đặt C = \(3^{4n+1}+2^{4n+1}\)

Ta có:

\(3^{4n+1}=\left(3^4\right)^n.3\)

\(2^{4n}=\left(2^4\right)^n.2\)

\(3^4\equiv1\left(mod10\right)\)

\(\Rightarrow\left(3^4\right)^n\equiv1^n\left(mod10\right)\equiv1\left(mod10\right)\)

\(\Rightarrow3^{4n+1}\equiv\left(3^4\right)^n.3\left(mod10\right)\equiv1.3\left(mod10\right)\equiv3\left(mod10\right)\)

\(\Rightarrow\) Chữ số tận cùng của \(3^{4n+1}\) là \(3\)

\(2^4\equiv6\left(mod10\right)\)

\(\Rightarrow\left(2^4\right)^n\equiv6^n\left(mod10\right)\equiv6\left(mod10\right)\)

\(\Rightarrow2^{4n+1}\equiv\left(2^4\right)^n.2\left(mod10\right)\equiv6.2\left(mod10\right)\equiv2\left(mod10\right)\)

\(\Rightarrow\) Chữ số tận cùng của \(2^{4n+1}\) là \(2\)

\(\Rightarrow\) Chữ số tận cùng của C là 5

\(\Rightarrow C⋮5\)

4 tháng 12 2014

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

10 tháng 12 2014

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

7 tháng 9 2017

B = 1 + 3 + 32 +......+ 311

   = (1+3)+(32+33)+.....+(310+311)

   = 1.(1+3)+32(1+3)+.....+310(1+3)

   = (1+3)(1+32+.....+310)

   = 4(1+32+......+310) chia hết cho 4

Vậy B chia hết cho 4

câu b của bạn thiếu số 3 ở giữa số 1 và 32 nghen