chung to rang phuong trinh
6x=3 ( 2x + 2) - 6
nghiem dung voi moi gia tri cua x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x2 - (m+1)x =5
=>3x2 - (m+1)x - 5 =0
denta:(m+1)2-(-4(3.5))
=(m+1)(m+1)+972
=m2+2m+973>0 với mọi m
=>(1) có luôn có nghiệm (Đpcm)
\(B=x^4-2x^3+2x^2-4x+5\)
\(=\left(x^4-2x^3+x^2\right)+\left(x^2-4x+4\right)+1\)
\(=\left(x^2-x\right)^2+\left(x-2\right)^2+1\)
Vì: \(\begin{cases}\left(x^2-x\right)^2\ge0\\\left(x-2\right)^2\ge0\end{cases}\)\(\Rightarrow\left(x^2-x\right)^2+\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x^2-x\right)^2+\left(x-2\right)^2+1>0\)
Kết luận...............................................
cmr bieu thuc sau luon luon co gia tri duong voi moi gia tri cua bien: 3x^2 -5x+3
chung minh rang bieu thuc 4x(x+y)(x+y+z)(x+y) y^2x^2 luon luon khong am voi moi gia tri cua x,y va z
Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4\left(x+y\right)\left(x+z\right)x\left(x+y+z\right)+y^2z^2=4\left(x^2+xz+xy+yz\right)\left(x^2+xy+xz\right)+y^2z^2\)
Đặt x2+xy+xz=t, ta có:
\(A=4\left(t+yz\right)t+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\)
chung minh rang bieu thuc 4x(x+y)(x+y+z)(x+y) y^2x^2 luon luon khong am voi moi gia tri cua x,y va z
ta có : \(4x\left(x+y\right)\left(x+y+z\right)\left(x+y\right)y^2x^2=4x\left(x+y+z\right)\left(x+y\right)^2y^2x^2\)
không thể khẳng định đc \(\Rightarrow\) bn xem lại đề .
Ta có: 7n+10 và 5n+7 nguyên tố cùng nhau
Gọi ước chung của 2 số này là d
=> 7n+10 chia hết cho d
=> 5n+7 chia hết cho d
=> 5(7n+10) chia hết cho d
=> 7(5n+7) chia hết cho d
=> 35n+ 50 chia hết cho d
=> 35n+ 49 chia hết cho d
=> 35n+50 - 35n+49 chia hết cho d
=> 1 chia hết cho d
=> d thuộc U( 1)
=> d=1
=> Nguyên tố cùng nhau
Tick mình nha các bạn
Trường hợp 1: m=0
=>-3<0(luôn đúng)
=>Nhận
Trường hợp 2: m<>0
\(\text{Δ}=\left(2m\right)^2-4\cdot m\cdot\left(-3\right)=4m^2+12m=4m\left(m+3\right)\)
Để phương trình có nghiệm đúng thì \(\left\{{}\begin{matrix}4m\left(m+3\right)< 0\\m< 0\end{matrix}\right.\Leftrightarrow-3< m< 0\)
Vậy: -3<m<=0
6x=3(2x+2)-6
6x=6x+6-6
6x=6x
=>Nghiệm của phương trình đúng với mọi giá trị của x
3(2x+2)-6=6x+6-6=6x