K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2015

\(\sqrt{17-1}=\sqrt{16}\)

\(\sqrt{37-3}=\sqrt{34}\)

\(\sqrt{16}<\sqrt{34}\)

Suy ra Căn 17-1 nhỏ hơn căn 37-3

b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)

\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)

mà 80>75

nên \(4\sqrt{5}>5\sqrt{3}\)

28 tháng 3 2021

Dễ mà:vvv

Ta có: \(\left\{{}\begin{matrix}\sqrt{37}>\sqrt{36}=6\\\sqrt{26}>\sqrt{25}=5\end{matrix}\right.\)

=> \(\sqrt{37}+\sqrt{26}+1>\sqrt{36}+\sqrt{25}+1=6+5+1=12\)

Mà \(\sqrt{144}=12\)

=> \(\sqrt{37}+\sqrt{26}+1>\sqrt{144}\)

Ta có: \(\sqrt{37}>\sqrt{36}=6\)

\(\sqrt{26}>\sqrt{25}=5\)

Do đó: \(\sqrt{37}+\sqrt{26}>6+5=11\)

\(\Leftrightarrow\sqrt{37}+\sqrt{26}+1>12\)

hay \(\sqrt{144}< \sqrt{37}+\sqrt{26}+1\)

Bài 1: 

Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)

Số giá trị nguyên thỏa mãn điều kiện là:

\(\left(2+4\right)+1=7\)

 

4 tháng 6 2021

\(\sqrt{17}-1>\sqrt{16}-1=4-1=3\)

4 tháng 6 2021

\(\sqrt{17}-1\) > 3

 

28 tháng 8 2019

a) Ta có căn 37 > căn 36 =6

Vậy căn 37>6

b) Ta có căn 17> căn 16=a

Vậy căn 17>4

c) Ta có 0,64 <0,7 mà 0,64 và 0,7 >0 

=> căn 0,64 < căn 0,7 hay 0,8< căn 0,7

Vậy căn  0,7 >0,8

28 tháng 8 2019

a) \(6=\sqrt{36}< \sqrt{37}\)

b) \(4=\sqrt{16}< \sqrt{17}\)

c) \(0,8=\sqrt{0,64}< \sqrt{0,7}\)

Giúp mình với mn

a) 7 và \(\sqrt{37}+1\)

=7 và 7,08

=>......

b) \(\sqrt{17}-\sqrt{50}-1\)và \(\sqrt{99}\)

=-3,95 và 9,95

=>.....

16 tháng 6 2017

a/ \(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)

\(\sqrt{45}< \sqrt{49}=7\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

b/ Ta có:

\(\sqrt{n}< \sqrt{n+1}\)

\(\Rightarrow2\sqrt{n}< \sqrt{n+1}+\sqrt{n}\)

\(\Rightarrow\dfrac{1}{\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)

Áp dụng vào bài toán được

\(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{36}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{37}-\sqrt{36}\right)\)

\(=2\left(\sqrt{37}-1\right)>6\)

NV
30 tháng 7 2021

\(A=\dfrac{2}{\sqrt{17}+\sqrt{15}}\) ; \(B=\dfrac{2}{\sqrt{15}+\sqrt{13}}\)

Mà \(\sqrt{17}+\sqrt{15}>\sqrt{15}+\sqrt{13}>0\)

\(\Rightarrow\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{15}+\sqrt{13}}\)

\(\Rightarrow A< B\)

\(A=\sqrt{17}-\sqrt{15}=\dfrac{2}{\sqrt{17}+\sqrt{15}}\)

\(B=\sqrt{15}-\sqrt{13}=\dfrac{2}{\sqrt{13}+\sqrt{15}}\)

mà \(\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{13}+\sqrt{15}}\)

nên A<B