Cho \(\frac{a}{x}\)+\(\frac{y}{b}\)= 1 và \(\frac{b}{y}\)+\(\frac{z}{c}\)= 1
Tính abc+xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x/a+y/b = xy/ay+ ba/ay=xy+ab/ay=1
=>xy+ab=ay
=>xy=a(y-b)
=>y-b=xy/a (1)
Ta lại có :y/b+c/z=yz/bz +bc/bz=yz+bc/bz=1
=>yz+bc=bz
=>yz-bz=-bc
=>z(y-b)=-bc
=>y-b=-bc/z (2)
Từ (1),(2)=> xy/a=-bc/z( =y-b) => xyz= -abc
=>xyz+abc=0
1) \(\left\{{}\begin{matrix}b+c-a=x\\c+a-b=y\\a+b-c=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{z+x}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)
BĐT cần cm trở thành:
\(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\ge3\)
Theo AM-GM, VT>=6/2=3
Dấu bằng xảy ra khi a=b=c
2)\(x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x^2\sqrt{\frac{1}{x}}=2x\sqrt{x}\)
=>\(P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)
Đặt \(\left\{{}\begin{matrix}x\sqrt{x}=a\\y\sqrt{y}=b\\z\sqrt{z}=c\end{matrix}\right.\Rightarrow abc=1\)
=>\(P\ge\frac{2a}{b+2c}+\frac{2b}{c+2a}+\frac{2c}{a+2b}\ge2.1=2\)
(Dùng Cauchy-Schwartz chứng minh được:
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\))
Dấu bằng xảy ra khi a=b=c=1 <=> x=y=z=1
Vậy minP=2<=>x=y=z=1