K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2019

M I E A F P O D C B

a\()\)Gọi O là giao điểm hai đường chéo của hình chữ nhật ABCD . Dễ thấy : AM // DO

=> Tứ giác AMDB là hình thang

b\()\)Do AM // BD nên \(\widehat{OBA}=\widehat{MAE}(\text{hai giác đồng vị})\). Tam giác AOB cân ở O nên \(\widehat{OBA}=\widehat{OAB}\). Gọi I là giao điểm hai đường chéo của hình chữ nhật AEMF thì tam giác AIE cân ở I nên \(\widehat{IAE}=\widehat{IEA}\)

Từ các chứng minh trên suy ra : \(\widehat{FEA}=\widehat{OAB}\)do đó EF // AC \((1)\)

Mặt khác IP là đường trung bình của tam giác MAC nên IP // AC \((2)\)

Từ 1 và 2 => 3 điểm E,F,P thẳng hàng

c\()\)\(\Delta MAF~\Delta DBA(g-g)\Rightarrow\frac{MF}{FA}=\frac{AD}{AB}(\text{không đổi})\)

Bạn tham khảo nhé Bùi Quang Sang

Chúc bạn học tốt ~

4 tháng 8 2021

a) Chọn điểm O là giao điểm của 2 đường chéo của hình chữ nhật ABCD
⇒ PO là đường trung bình của △ CAM
⇒ PO // AM ⇒ BD//AM
⇒ Tứ giác AMDB là hình thang
b)   Từ a ta có: có AM // BD
⇒     \(\widehat{A_1}=\widehat{B_1}\) ( đồng vị )
Mà △ OAB cân tại O ( vì ABCD là hình chữ nhật )
⇒   \(\widehat{A_2}=\widehat{B_1}\)
⇒  \(\widehat{A_1}=\widehat{A_2}\)    \(\left(1\right)\)
Gọi I là giao điểm của 2 đường chéo của hình chữ nhật AEMF
⇒     △ IEA cân tại I
⇒     \(\widehat{E_1}=\widehat{A_1}\)   \(\left(2\right)\)
Từ \(\left(1\right)\)\(\left(2\right)\) ⇒  \(\widehat{E_1}=\widehat{A_1}\) ( ở vị trí đồng vị )
⇒ EF // AC  \(\left(3\right)\)
     Mặt khác IP là đường trung bình của △ MAC ( do I,P là trung điểm của AM và BD )
⇒  IP //  AC   \(\left(4\right)\)
Từ \(\left(3\right)\)\(\left(4\right)\) ⇒ EF  // IP ⇒  Ba điểm E, F, P thẳng hàng
c) Xét△ MAF và △ DBA có:
\(\widehat{MFA}=\widehat{DAB}\)  \(=90^o\)
\(\widehat{A_1}=\widehat{B_1}\) ( cmt ) ;  \(\widehat{A_1}=\widehat{M_1}\)   ( so le trong )
⇒ \(\widehat{B_1}=\widehat{M_1}\)
⇒△ MAF ∼ △ DBA ( g - g )
\(\dfrac{MF}{DA}=\dfrac{AF}{BA}\)    ⇒    \(\dfrac{MF}{AF}=\dfrac{DA}{BA}\)   ( không đổi )