cho tam giác ABC có AB = 5 cm. AC = 12 cm. BC = 13 cm. M, N lần lượt là trung điiểm của AC và BC. tính góc AMN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔAHB vuông tại H
mà HN là đường cao
nên AN*AB=AH^2
ΔAHC vuông tại H
mà HM là đường cao
nên AM*AC=AH^2
=>AN*AB=AM*AC
=>AN/AC=AM/AB
=>ΔANM đồng dạng với ΔACB
b: \(BH=\sqrt{15^2-12^2}=9\left(cm\right)\)
\(CH=\sqrt{13^2-12^2}=5\left(cm\right)\)
=>BC=14cm
Tam giác AHN đồng dạng với tam giác ACH ( tự chứng minh )
\(\Rightarrow\frac{AH}{AC}=\frac{AN}{AH}\Rightarrow AH^2=AN.AC\left(1\right)\)
tam giác AHB đồng dạng với tam giác AMH ( Tự chứng minh )
\(\Rightarrow\frac{AH}{AM}=\frac{AB}{AH}\Rightarrow AH^2=AB.AM\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra AB.AM = AN.AC
\(\Rightarrow\frac{AC}{AB}=\frac{AM}{AN}\)
Xét tam giác AMN và tam giác ACB có:
\(\widehat{MAN}\)chung
\(\frac{AM}{AN}=\frac{AC}{AB}\left(cmt\right)\)
Suy ra tam giác AMN đồng dạng với tam giác ACB ( c-g-c )
b) Áp dụng định lý PITAGO tính ra BH và CH
rồi tiếp tục tính tiếp BC
- bạn ơi
- Chứng minh ngay luôn hộ mình để mình còn gửi bài cho cô nè. mình không có time đâu bạn
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
=
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
QM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
tóm lị là ABGHMN là sai
a) ta có: AM = AN ( = 1/2AB = 1/2AC)
=> AMN cân tại A
b) Xét tg ABN và tg ACM
có: AB = AC
^A chung
AN = AM ( = 1/2AB = 1/2AC)
=> tg ABN = tg ACM (c-g-c)
=> BN = CM
c) Xét tg ABC
có: BN cắt CM tại I
=> AI là đường trung tuyến của BC
=> AI là tia pg ^A ( tg ABC cân tại A)
d) ta có: tg ABC cân tại A
AI là đường phân giác
=> AI là đg cao
\(\Rightarrow AI\perp BC\)
ta có: tg AMN cân tại A
AI là đường cao
=> AI vuông góc với MN
...
hình tự vẽ
90 độ bạn nhé