\(\frac{2^{2016}+2^{2016}}{-2^{2017}}\)
Ai đó làm ơn giúp mình nha nhé, mik còn ít time lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : A = 1 + 2 + 2^2 + 2^3 + ... + 2^2016
=> 2A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^2017
=> 2A - A = ( 2 + 2^2 + 2^3 + 2^4 + ... + 2^2017 ) - ( 1 + 2 + 2^2 + 2^3 + ... + 2^2016 )
=> A = 2^2017 - 1
=> A < 2^2017
Vậy A < 2^2017
Ta đặt A = 1 + 2 + 22 + 23 + ....+ 22016
=> 2A = 2 + 22 + 23 + ...+22017
=> 2A - A = (2+22+23+...+22017) - (1+2+22+...+22016 )
=> A = 22017 - 1
Mà 22017 - 1 < 22017
=> A < 22017
Vậy 1 + 2 + 22 + ...+ 22016 < 22017
Nhân chéo là được bạn ạ
TA so sánh: (15^5+2017).(19^5-2) với (19^5+2016).(19^5-1)
Dễ dàng thấy (15^5+2017).(19^5-2) < (19^5+2016).(19^5-1) (Mỗi thừa số của tích này đều lớn hơn mỗi thừa số của tích kia)
Suy ra A<B.
Mình giúp bạn nha!
A = 2017/1 + 2017/2 + 2017/3 + . . . + 2017/2018 / 2017/1 + 2016/2 + 2015/3 + . . .+ 1/2017
= 2017 . ( 1 + 1/2 + 1/3 + . . . +1/2018 ) / ( 2017 . 2016 . 2015 . . . 1) . ( 1 + 1/2 + 1/3 +. . . + 1/2017 )
= 1/2016 . 2015 . 2014. . . 1
k mình nha
Bài 1 : dễ bạn tự làm được :)
Bài 2 :
Ta có :
\(B=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì :
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
Nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Leftrightarrow\)\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow\)\(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Ta có : B = 2016 + 2017 + 2018 2015 + 2016 + 2017 = 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 Vì : 2016 2015 > 2016 + 2017 + 2018 2015 2017 2016 > 2016 + 2017 + 2018 2016 2018 2017 > 2016 + 2017 + 2018 2017 Nên 2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 ⇔ 2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 ⇔A > B Vậy A > B Chúc bạn học tốt ~
\(\text{K - 2016 = }\frac{\text{1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + ... + ( 1 + 2 + 3 + ... + 2017 )}}{\text{2017 x 1 + 2016 x 2 + 2015 x 3 + ... + 2 x 2016 + 1 x 2017}}\)
Ta có: \(x^2\ge0;\left|x+y\right|\ge0;\forall x,y\)
=> \(M=2015+3\left(x^2+1\right)^{2016}+\left|x+y\right|^{2017}\)
\(\ge2015+3\left(0+1\right)^{2016}+0^{2017}=2018\)
Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x^2=0\\\left|x+y\right|=0\end{cases}\Leftrightarrow x=y=0}\)
Vậy gtnn của M = 2018 đạt tại x = y = 0.
2^2016+2^2016/-2^2017
=2^2016(1+1)/-2^2017
=2^2017/-2^2017
=-1
-1 mk làm r bạn ạ