K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

a/Xét tam giác OCA và tam giác OCB:

OC chung

OAC=OBC(90 độ)

Góc AOC=BOC(Phân giác Oz)

=> Tam giác OCA=OCB(ch-gn)

=> CA=CB(cạnh tương ứng)

b/ Xét tam giác CAF và tam giác CBE:

Góc ACF=BCE(đối đỉnh)

Góc CBE=CAF(90 độ)

AC=CB(câu a)

=> Tma giác CAF=tam giác CBE(ch-gn)

=> CF=CE(cạnh tương ứng)

=> Tam giác CEF cân tại C

c/Xét tam giác vuông CBE có:

CE là cạnh huyền.

=> CE>CB Mà CB=CA

=> CE>CA(đpcm)

9 tháng 5 2016

Bạn tự vẽ hình nhaleu

b.

Xét tam giác AFC và tam giác BEC có:

FAC = EBC ( = 90 )

AC = BC (theo câu a)

ACF = BCE (2 góc đối đỉnh)

=> Tam giác AFC = Tam giác BEC (g.c.g)

=> CF = CE (2 cạnh tương ứng)

=> Tam giác CEF cân tại C

c.

Tam giác BCE vuông tại B có:

BC < CE (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà BC = AC (theo câu a)

=> AC < CE

Chúc bạn học tốtok

9 tháng 5 2016

câu a/ bạn biết rồi thì tui giải câu b và c

b/ Ta có tam giác CAE=tam giác CBF(cgv-gnk)

suy ra CE=CF

Vậy tam giác CEF cân tại C.

c/ Trong tam giác vuông cạnh huyền là cạnh lớn nhất nên AC<CE(cgv<ch).

9 tháng 5 2016

Câu b mình gợi ý cậu xét hai tam giác BC và tam giác CAF

Rồi từ đó => CE = CF ( vì hai cạnh tương ứng )

Vậy tam giác CEF cân ( vì CE = CF )

Còn câu c mình không biết nữa

21 tháng 4 2022

bn cần cả bài hay lm phần nào ạ

21 tháng 4 2022

cả bài ạ

 

a: Xét ΔOIA và ΔOIB có

OA=OB

\(\widehat{AOI}=\widehat{BOI}\)

OI chung

Do đó: ΔOIA=ΔOIB

b: Xét ΔONI vuông tại N và ΔOMI vuông tại M có

OI chung

\(\widehat{NOI}=\widehat{MOI}\)

Do đó: ΔONI=ΔOMI

Suy ra: IN=IM

a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có

OC chung

góc AOC=góc BOC

=>ΔOAC=ΔOBC

=>OA=OB và CA=CB

b: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có

CA=CB

góc ACD=góc BCE

=>ΔCAD=ΔCBE

=>CD=CE và AD=BE

c: Xét ΔOED có OA/AD=OB/BE

nên AB//ED

 

DD
12 tháng 5 2022

a) Xét tam giác \(OIA\) và tam giác \(OIB\) có: 

\(OA=OB\)

\(\widehat{AOI}=\widehat{BOI}\)

\(OI\) cạnh chung

suy ra \(\Delta OIA=\Delta OIB\) (c.g.c) 

b) Xét tam giác \(OIN\) và tam giác \(OIM\):

\(\widehat{ION}=\widehat{IOM}\)

\(OI\) cạnh chung

\(\widehat{ONI}=\widehat{OMI}\left(=90^o\right)\)

suy ra \(\Delta OIN=\Delta OIM\) (cạnh huyền - góc nhọn)

\(\Rightarrow IN=IM\)

c) \(\Delta OIA=\Delta OIB\) suy ra \(IA=IB\).

Xét tam giác \(INA\) và tam giác \(IMB\):

\(IA=IB\)

\(\widehat{INA}=\widehat{IMB}\left(=90^o\right)\)

\(IN=IM\)

suy ra \(\Delta INA=\Delta IMB\) (cạnh huyền - cạnh góc vuông)

\(\Rightarrow\widehat{AIN}=\widehat{BIM}\)

d) \(\Delta OIN=\Delta OIM\) suy ra \(ON=OM\)

suy ra \(\dfrac{ON}{OA}=\dfrac{OM}{OB}\) suy ra \(MN//AB\).