Cho hai đường thẳng: \(\Delta:\left(m+3\right)x+3y-2m+3=0,\Delta':2x+2y+2-3m=0\). Tìm giá trị của tham số m để:
a, Đường thẳng △ song song với △'
b, Đường thẳng △ cắt đường thẳng △'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Hai đường thẳng song song khi:
\(\dfrac{m+3}{2}=\dfrac{3}{2}\ne\dfrac{-2m+3}{2-3m}\)
\(\Leftrightarrow m=0\)
b.
Hai đường thẳng trùng nhau khi: \(\dfrac{m+3}{2}=\dfrac{3}{2}=\dfrac{-2m+3}{2-3m}\Rightarrow\) ko tồn tại m thỏa mãn
Vậy 2 đường thẳng cắt nhau khi \(m\ne0\)
1: x^2+y^2+6x-2y=0
=>x^2+6x+9+y^2-2y+1=10
=>(x+3)^2+(y-1)^2=10
=>R=căn 10; I(-3;1)
Vì (d1)//(d) nên (d1): x-3y+c=0
Theo đề, ta có: d(I;(d1))=căn 10
=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)
=>|c-6|=10
=>c=16 hoặc c=-4
M ∈ Δ => M( 1 + 2m ; m)
Do AM // d nên \(\overrightarrow{n_{AM}}=\overrightarrow{n_d}=\left(4;-3\right)\)
Phương trình AM có dạng: 4(x -1 - 2m) - 3(y - m) = 0
Mà A ∈ AM nên: 4(-1 -1 - 2m) - 3(3 - m) = 0
⇔ m= \(\frac{-17}{5}\) => M(\(\frac{-29}{5};\frac{-17}{5}\))
Để hai đường thẳng song song thì:
m 2 = 2 m − 2 3 ≠ − m + 6 1 ⇔ m 2 = 2 m − 2 3 m 2 ≠ − m + 6 1 ⇔ 3 m = 4 m − 4 m ≠ − 2 m + 12 ⇔ m = 4 m ≠ 4
không tồn tại m thỏa mãn yêu cầu bài toán.
ĐÁP ÁN D
Chứng minh công thức tổng quát phương trình đi qua 2 điểm cực trị:
giả sử hàm bậc 3: \(y=ax^3+bxx^2+cx+d\left(a\ne0\right)\) có 2 điểm cực trị x1;x2
Ta đi tìm số dư 1 cách tổng quát:
Ta có: \(y'=3ax^2+2bx+c-và-y''=6ax+b\)
Xét phép chia giữa y' và y'' ta có: \(y=y'\left(\dfrac{1}{3}x+\dfrac{b}{9a}\right)+g\left(x\right)\left(1\right)\) là phường trình đi qua 2 điểm cực trị của đồ thị hàm số bậc 3
từ (1) Ta có: \(y=y'\dfrac{3ax+b}{9a}+g\left(x\right)-hay-y=y'\dfrac{6ax+2b}{18a}g\left(x\right)\)
Từ đây dễ suy ra: \(g\left(x\right)=y-\dfrac{y'.y''}{18a}\left(công-thức-tổng-quát\right)\) ( dĩ nhiên bạn chỉ cần nhớ cái này )
áp dụng vào bài toán ta có:
\(2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x-\left(6x^2+6\left(m-1\right)x+6m\left(1-2m\right)\right).\dfrac{12x+6\left(m-1\right)}{18.2}\)
Gán: \(\left\{{}\begin{matrix}x=i\\m=10\end{matrix}\right.\) => 1710-841i
\(\Rightarrow y=4m\left(-2m-1\right)x+17m^2+m\) bài toán quay trở về bài toán đơn giản bạn giải nốt là oke
Khiếp học ghê như vầy bảo dạy người ta thì kêu thôi, sợ sót kiến thức :)))?
a. Gọi \(A\left(x_0;y_o\right)\) là điểm cố định mà \(\Delta\)đi qua
Ta có phương trinh hoành độ giao điểm \(\left(m-3\right)x_o-\left(m-2\right)y_0+m-1=0\)
\(\Leftrightarrow mx_0-my_0+m-\left(3x_0-2y_0+1\right)=0\Leftrightarrow m\left(x_0-y_0+1\right)-\left(3x_0-2y_0+1\right)=0\)
Vì đẳng thức đúng với mọi m nên \(\hept{\begin{cases}x_0-y_0+1=0\\3x_0-2y_0-1=0\end{cases}\Rightarrow\hept{\begin{cases}x_0=3\\y_0=4\end{cases}\Rightarrow}A\left(3;4\right)}\)
Vậy \(\Delta\)luôn đi qua điểm \(A\left(3;4\right)\)cố định
b. Ta có \(\left(m-2\right)y=\left(m-3\right)x+m-1\)
Để \(\Delta\)song song với Ox thì \(\hept{\begin{cases}m-2\ne0\\m-3=0\end{cases}\Rightarrow m=3}\)
Để \(\Delta\)song song với Oy thì \(\hept{\begin{cases}m-2=0\\m-3\ne0\end{cases}\Rightarrow m=2}\)
Để \(\Delta\)song song với đt \(y=x\)\(\Rightarrow\hept{\begin{cases}m-2=1\\m-3=1\end{cases}\Rightarrow\hept{\begin{cases}m=3\\m=4\end{cases}\left(l\right)}}\)
Vậy không tồn tại m để \(\Delta\)song song với đt \(y=x\)
Để hàm số y=(m-1)x+4 là hàm số bậc nhất thì \(m-1\ne0\)
hay \(m\ne1\)
a) Để (d1) và (d2) song song với nhau thì \(\left\{{}\begin{matrix}m-1=2m+3\\3m-1\ne4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-2m=3+1\\3m\ne5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-m=4\\3m\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-4\\m\ne\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=-4\)
Kết hợp ĐKXĐ, ta được: m=-4
Vậy: Để (d1) và (d2) song song với nhau thì m=-4
a) Để hai đồ thị song song thì \(\left\{{}\begin{matrix}m-2=3\\m+3\ne m-3\end{matrix}\right.\Leftrightarrow m=5\)
b) Để hai đồ thị vuông góc thì \(3(m-2)=-1\)
\(\Leftrightarrow m-2=\dfrac{-1}{3}\)
hay \(m=\dfrac{-1}{3}+2=\dfrac{5}{3}\)
Giao điểm A của d1 và d2 là nghiệm:
\(\left\{{}\begin{matrix}x+2y+1=0\\x+y-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=11\\y=-6\end{matrix}\right.\)
\(\Delta\) song song d3 nên nhận (2;3) là 1 vtpt, nên có pt:
\(2\left(x-11\right)+3\left(y+6\right)=0\Leftrightarrow2x+3y-4=0\)