Tính tổng sau:
A=\(1+\left(-2\right)+\left(-3\right)+4+5+\left(-6\right)+\left(-7\right)+8+...+1997+\left(-1998\right)+\left(-1999\right)+2000\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(6 - 8 = 6 + \left( { - 8} \right) = - \left( {8 - 6} \right) = - 2\)
b) \(3 - \left( { - 9} \right) = 3 + 9 = 12\)
c) \(\left( { - 5} \right) - 10 = \left( { - 5} \right) + \left( { - 10} \right)\)\( = - \left( {5 + 10} \right) = - 15\)
d) \(0 - 7 = 0 + \left( { - 7} \right) = - 7\)
e) \(4 - 0 = 4 + 0 = 4\) (vì số đối của 0 là 0)
g) \(\left( { - 2} \right) - \left( { - 10} \right) = \left( { - 2} \right) + 10\)\( = 10 - 2 = 8\).
a) tạm bỏ số 1 ra => có 2012 số hạng=> có 1006 cặp =(-1)
=> A=1+-(-1).1006=-1005
b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
a) \(8 - \left( {x - 15} \right) = 2.\left( {3 - 2x} \right)\)
\(8 - x + 15 = 6 - 4x\)
\( - x + 4x = 6 - 8 - 15\)
\(3x = - 17\)
\(x = \left( { - 17} \right):3\)
\(x = \dfrac{{ - 17}}{3}\)
Vậy nghiệm của phương trình là \(x = \dfrac{{ - 17}}{3}\).
b) \( - 6\left( {1,5 - 2u} \right) = 3\left( { - 15 + 2u} \right)\)
\( - 9 + 12u = - 45 + 6u\)
\(12u - 6u = - 45 + 9\)
\(u = \left( { - 36} \right):6\)
\(6u = - 36\)
\(u = - 6\)
Vậy nghiệm của phương trình là \(u = - 6\).
c) \({\left( {x + 3} \right)^2} - x\left( {x + 4} \right) = 13\)
\(\left( {{x^2} + 6x + 9} \right) - \left( {{x^2} + 4x} \right) = 13\)
\({x^2} + 6x + 9 - {x^2} - 4x = 13\)
\(\left( {{x^2} - {x^2}} \right) + \left( {6x - 4x} \right) = 13 - 9\)
\(2x = 4\)
\(x = 4:2\)
\(x = 2\)
Vậy nghiệm của phương trình là \(x = 2\).
d) \(\left( {y + 5} \right)\left( {y - 5} \right) - {\left( {y - 2} \right)^2} = 5\)
\(\left( {{y^2} - 25} \right) - \left( {{y^2} - 4y + 4} \right) = 5\)
\({y^2} - 25 - {y^2} + 4y - 4 = 5\)
\(\left( {{y^2} - {y^2}} \right) + 4y = 5 + 4 + 25\)
\(4y = 34\)
\(y = 34:4\)
\(y = \dfrac{{17}}{2}\)
Vậy nghiệm của phương trình là \(y = \dfrac{{17}}{2}\).
\(\dfrac{5^{1998}+5^{2000}+5^{2002}}{5^{1999}+5^{1997}+5^{1995}} \)
\(= \dfrac{5^{1998}(1 + 5^2 + 5^4)}{5^{1995}(5^4 + 5^2 + 1)} \\ = \dfrac{5^{1998}}{5^{1995}} \cdot \dfrac{1 + 5^2 + 5^4}{5^4 + 5^2 + 1} \\ = 5^3\)
a) \(x^4-x^2+\dfrac{1}{4}-\dfrac{225}{4}=0\\ \left(x^2-\dfrac{1}{2}\right)^2-\dfrac{15}{2}^2=0\\ \left(x+7\right)\left(x-8\right)=0\\ \left[{}\begin{matrix}x=8\\x=-7\end{matrix}\right.\)
Vậy x = 8 hoặc x = -7
a: Ta có: \(x^4-x^2-56=0\)
\(\Leftrightarrow x^4-8x^2+7x^2-56=0\)
\(\Leftrightarrow\left(x^2-8\right)\left(x^2+7\right)=0\)
\(\Leftrightarrow x^2-8=0\)
hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)
a) \(S=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\)
\(\Leftrightarrow S=\left(1-2\right)+\left(3-4\right)+....+\left(2013-2014\right)+2015\)
Vì từ 1 đến 2014 có 2014 số hạng => có 1007 cặp => Có 1007 cặp -1 và số 2015
\(\Rightarrow S=\left(-1\right)\cdot1007+2015\)
<=>S=-1007+2015
<=> S=1008
a) \(\left( { - 5} \right).4 = - \left( {5.4} \right) = - 20\)
b) \(6.\left( { - 7} \right) = - \left( {6.7} \right) = - 42\)
c) \(\left( { - 14} \right).20 = - \left( {14.20} \right) = - 280\)
d) \(51.\left( { - 24} \right) = - \left( {51.24} \right) = - 1224\)
\(=\frac{21.273.1333.4161.10101}{91.651.2451.6643.14763}\)
\(=\frac{3.7.13.21.31.43.73.57.91.111}{7.13.21.31.43.57.73.91.111.133}=\frac{3}{133}\)
Tuy nhiên cách làm trên phải có máy tính mới làm đc:
Có thể sử dụng công thức:
\(x^4+x^2+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Sau đó phân h:
\(2^4+2^2+1=\left(2^2+2+1\right)\left(2^2-2+1\right)=7.3\)
\(4^4+4^2+1=\left(4^2+4+1\right)\left(4^2-4+1\right)=21.13\)
....Tiếp tực làm thì sẽ ra đc kết quả:
\(=\frac{3.7.13.21.31.43.73.57.91.111}{7.13.21.31.43.57.73.91.111.133}=\frac{3}{133}\)
A=[1+(-2)+(3)+4]+[5+(-6)+(-7)]+.....+[1997+(-1998)+(-1999)+2000] A=0+0+0+...+0=0
A =0 đg ko