K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

Đa thức bậc hai cần tìm có dạng f(x) = ax+bx+c (a khác 0 )

Ta có f(x-1)=a(x-1)2+b(x-1)+c

=>a=1                =>a=0.5

    b-a=0                   b=0.5

Vậy đa thức cần tìm có dạng 0.5x2+0.5x+c      (c la hang so tuy y)

Ap dung :

+>Với x=1 ta có f(1)-f(0) = 1

+>Với x=2 ta có f(2)-f(1) = 2

. . . . . . . . . . . . 

+>Voi x=n ta co f(n)-f(n-1)=n

=>S=1+2+3+......+n= f(n)-f(0)= n2/2+n/2 +c-c= n*(n+1)/2

27 tháng 9 2017

+,  f(0)=1

=> a.0^2+b.0+c=1

    a.0 +0 +c=1

0+0+c=1

=> c=1

+, f(1)=-1

=> a.1^2+b.1+1=-1

a+b+1=-1

a+b=-1-1

a+b=-2

+, f(-1)=5

=> a.(-1)^2 + b.(-1) +1 =5

a-b+1=5

a-b=5-1

a-b= 4

vì a+b=-2 và a-b= 4

=> a= (-2+4):2=1

b=-2-1=-3

vậy a=1; b=-3; c=1

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Thay x = 1 vào đa thức F(x), ta có:

F(1) = a.12 + b.1 + c = a+ b + c

Mà a + b + c = 0

Do đó, F(1) = 0. Như vậy x = 1 là một nghiệm của F(x)

b) Ta có: Đa thức 2x2 – 5x + 3 có a = 2 ; b = -5; c = 3 nên a + b + c = 2 + (-5) + 3 = 0

Do đó, đa thức có 1 nghiệm là x = 1

a: f(1)=a+b+c=0

=>x=1 là nghiệm

b: Vì 5-6+1=0

nên f(x)=5x^2-6x+1 có một nghiệm là x=1

28 tháng 1 2016

ko

28 tháng 1 2016

kho

AH
Akai Haruma
Giáo viên
13 tháng 6 2018

Lời giải:

a)

\(f(x)=ax^2+bx\Rightarrow \left\{\begin{matrix} f(x)=ax^2+bx\\ f(x-1)=a(x-1)^2+b(x-1)\end{matrix}\right.\)

Do đó:

\(f(x)-f(x-1)=x\)

\(\Leftrightarrow ax^2+bx-a(x-1)^2-b(x-1)=x\)

\(\Leftrightarrow a[x^2-(x-1)^2]+b=x\)

\(\Leftrightarrow a(2x-1)+b=x\)

\(\Leftrightarrow x(2a-1)+(b-a)=0\)

Vì đẳng thức luôn đúng với mọi $x$ nên \(\left\{\begin{matrix} 2a-1=0\\ b-a=0\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)

b) \(f(x)=\frac{1}{2}x^2+\frac{1}{2}x\)

Theo phần a:

\(1=f(1)-f(0)\)

\(2=f(2)-f(1)\)

\(3=f(3)-f(2)\)

.....

\(n=f(n)-f(n-1)\)

Cộng theo vế:

\(\Rightarrow S=1+2+...+n=f(n)-f(0)=\frac{1}{2}n^2+\frac{1}{2}n-\frac{1}{2}.0^2-\frac{1}{2}.0=\frac{n(n+1)}{2}\)

8 tháng 4 2017

...?

bó tay ạ

27 tháng 8 2017

xét f(x)=ax^2 cộg bx cộg c 
f(x)-f(x-1)=x 
<=>2ax-(a-b)=x 
vì phân tích trên là duy nhất suy ra a=b=1/2 
nên f(x)=(x^2 cộng x)/2 cộg c (c là hằg số) 
cho x=0,1,2,...n rồi cộng lại ta đc: 
f(n)-f(0)=1 cộng 2 cộng...cộg n 
<=>(x^2 cộg x)/2=1 cộg 2 cộg...cộng n.