Tìm số dư của B = 3 + 32 + 33 + ... + 3100 khi chia cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3+3^2+3^3+...+3^{100}\)
\(=3+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=3+3^2\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=3+3^2.13+...+3^{98}.13\)
\(=3+13\left(3^2+...+3^{98}\right)\)
\(\Rightarrow B⋮̸13\)
\(\Rightarrow B:13\) dư 3.
Bài 1:
$B=1+3+3^2+3^3+...+3^{100}$
$=1+(3+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})$
$=1+3(1+3)+3^3(1+3)+...+3^{99}(1+3)$
$=1+(1+3)(3+3^3+...+3^{99})=1+4(3+3^3+....+3^{99})$
$\Rightarrow B$ chia 4 dư 1.
Bài 2:
$C=5-5^2+5^3-5^4+...+5^{2023}-5^{2024}$
$5C=5^2-5^3+5^4-5^5+...+5^{2024}-5^{2025}$
$\Rightarrow C+5C=5-5^{2025}$
$6C=5-5^{2025}$
$C=\frac{5-5^{2025}}{6}$
B=3+3²+3³+..... +3¹00
B=3²+3³+3⁴+... 3¹00+3
B=3²(1+3+3²) +... +3 98(1+3+3²) +3
B=3²•13+... +3 98•13+3
=) 3²•13+3 98•13 chia hết cho 13
=) Số dư là 3
B = 3 + 32 + 33 + 34 + ... + 3100
B = 31 + 32 + 33 + 34+... + 3100
Xét dãy số: 1; 2; 3; 4; ...; 100 dãy số này là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là: (100 - 1) : 1 + 1 = 100.
Vậy B có 100 hạng tử, vì 100 : 3 = 33 dư 1
Nên nhóm 3 hạng tử liên tiếp của B lại thành một nhóm ta được
B = (3100 + 399 + 398) + (397 + 396 + 395) + ... + (34 + 33 + 32) + 3
B = 398.(32 + 3 + 1) + 395.(32 + 3 + 1) + ... + 32.( 32 + 3 + 1) + 3
B = 398. 13 + 395.13 + ... + 32.13 + 3
B = 13.(398 + 395 + ... + 32) + 3
Vì: 13. (398 + 395 + ... + 32) ⋮ 13
⇒ B : 13 dư 3
\(M=1+3+3^2+............+3^{100}\)
\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+.......+\left(3^{98}+3^{99}+3^{100}\right)\)
\(\Leftrightarrow M=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+......+3^{98}\left(1+3+3^2\right)\)
\(\Leftrightarrow M=4+3^2.13+3^5.13+.........+3^{98}.13\)
\(\Leftrightarrow M=4+13\left(3^2+3^5+..........+3^{98}\right)\)
Mà \(13\left(3^2+3^5+......+3^{98}\right)⋮13\)
\(4:13\left(dư4\right)\)
\(\Leftrightarrow M:13\left(dư4\right)\)
b, tương tự
Bạn ơi mik vẫn chưa hiểu M=4+\(3^2\)+.....(mik chỉ viết ngắn gọn hoy) thì 4 bạn lấy ở đâu ra,rõ ràng đầu bài chỉ cho 1 thui mak
a,
S = 1 - 3 + 32 - 33+...+398 - 399
S = 30 - 31 + 32 - 33+...+ 398 - 399
xét dãy số: 0; 1; 2; 3;...;99
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)
100 : 4 = 25
Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì:
S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)
S = - 20+...+ 396.(1 - 3 + 32 - 33)
S = - 20 +...+ 396.(-20)
S = -20.( 30 + ...+ 396) (đpcm)
b,
S = 1 - 3 + 32 - 33+...+ 398 - 399
3S = 3 - 32 + 33-...-398 + 399 - 3100
3S + S = - 3100 + 1
4S = - 3100 + 1
S = ( -3100 + 1): 4
S = - ( 3100 - 1) : 4
Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)
B = 3 + 32 + 33 + ... + 3100
B = (3 + 32) + (33 + 34) + ... + (399 + 3100)
B = 3(1 + 3) + 33(1 + 3) + ... + 399(1 + 3)
B = 3.4 + 33.4 + ... + 399.4
B = 4(3 + 33 + ... + 399)
Vì 4(3 + 33 + ... + 399) \(⋮\) 4 nên B \(⋮\) 4
=> B chia 4 dư 0
cứ làm rồi ra được B chia hết cho 4
Vậy số dư là 0