Cho \(A=1+2+3+4+5+...+1000000\)
a) Tính tổng của A
b) A có phải là số chính phương không?
c) Chứng minh A+2 chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)3S=3(1+3+32+33+...+32012)
3S=3+32+33+...+32013
3S-S=(3+32+33+...+32013)-(1+3+32+33+...+32012)
2S=32013-1
Vậy 2S ko fai số chính phương
1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)
\(3^{40}=\left(3^2\right)^{20}=9^{20}\)
Vì \(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)
2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)
Ta có:\(n+3⋮d,2n+5⋮d\)
\(\Rightarrow2n+6⋮d,2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)
3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)
\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)
\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)
\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)
Nếu dịch dấu phẩy của số A sang bên phải 1 chữ số thì ta đc số tự nhiên chia hết cho 5, số A có 4 chữ số
=> A có dạng abc,5 ( a khác 0; a,b,c < 10)
=> a+b+c+5= 31
=> a+b+c= 26
=> a=8; b=c=9 hoặc a=b=9; c=8 hoặc a=c=9, b=8
lười làm câu b quá, link tham khảo: https://olm.vn/hoi-dap/detail/77434067599.html
a, còn trường hợp nào ko bạn? vì số A có thể là 9985,9895,8995 mà
b, số ab=72, 27 chẹp chẹp,câu này cũng cần thêm trường hợp mới xác định được
Nếu dịch chuyển dấu phẩy của số A sang bên phải 1 chữ số thì ta đc 1 số tự nhiên chia hết cho 5. SỐ A có 4 chữ số
=> A có dạng abc,5 ( a khác 0; a,b,c < 10)
=> a+b+c+5=31
=> a+b+c= 26
từ đó => a=8 => b,c=9 hoặc a.b =9; c=8 và a.c =9; b=8
S=1+3+\(3^2\)+\(3^3\)+.....+\(3^{2012}\)
S=(1+3)+(\(3^2\)+\(3^3\))+.......+(\(3^{2011}\)+\(3^{2012}\))
S=4+\(3^2\).(1+3)+.......+\(3^{2011}\)(1+3)
S=4+4.\(3^2\)+....+4.\(3^{2011}\)
S=4.(1+\(3^2\)+.....+\(3^{2011}\))\(⋮\)4
Vậy S chia hết cho 4
\(S=1+3+3^2+3^3+...+3^{2012}\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2010}+3^{2011}\right)+3^{2012}\)
\(S=4+3^2\left(1+3\right)+...+3^{2010}\left(1+3\right)+3^{4\times503}\)
\(S=4+3^2\times4+...+3^{2010}\times4+\left(.....1\right)\) (các chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n thì chữ số tận cùng là 1)
mà \(\left(.....1\right)⋮̸4\)
\(\Rightarrow S⋮̸4\)
Chúc bạn học tốt
b) 3 năm nữa
c)1
d)41
e)102; 201; 120, 210. có 2 số chia hết cho 5 là 120 và 210
g) 44
h) 4 số 0
b) hiệu số tuổi của mẹ và con là 27 (tuổi) và hiệu số tuổi của hai gnười luôn không đổi
khi tuổi mẹ gấp 4 lần tuổi
số tuổi mẹ chiếm 4 phần, tuổi con chiếm 1 phần
hiệu số phần bằng nhau là 4 - 1 = 3 ( phần )
tuổi mẹ khi đó là
27 : (4 - 1) * 4 = 36 ( tuổi
mẹ gấp 4 lần tuổi con sau 36 - 33 = 3 năm
vậy được rồi nha bạn
a) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}-1=10..0-1=9..99\)
Nên \(10^{10}-1\) ⋮ 9
b) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}+2=10..0+2=10..2\)
Mà: \(1+0+0+...+2=3\) ⋮ 3
Nên: \(10^{10}+2\) ⋮ 3