Tìm số tự nhiên n biết :
7n+26 chia hết cho n+3
Thank you very much
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.n+5 chia hết cho n+1
=> 2n+2+3 chia hết cho n+1
=> 2(n+1)+3 chia hết cho n+1
mà 2(n+1) chia hết cho n+1
=> 3 chia hết cho n+1
=> n+1 thuộc ước của 3
=> ......................
Ta có 2n+5=2(n+1)+3
Để 2n+5 chia hết cho n+1 thì 2(n+1)+3 chia hết cho n+1
Vì 2(n+1) chia hết cho n+1 => 3 chia hết cho n+1
n thuộc N => n+1 thuộc N
=> n+1 thuộc Ư (3)={1;3}
Nếu n+1=1 => n=0
Nếu n+1=3 => n=2
Vậy n={0;2}
a) 7n chia hết cho n+4
=> 7(n+4) -28 chia hết cho n+4
=> 28 chia hết cho n+4 ( Vì : 7(n+4) chia hết cho n+4 với mọi STN n )
=> n+4 thuộc Ư(27)= { \(\pm1;\pm3;\pm9;\pm27\) }
Đến đây bạn lập bảng gt rồi tìm ra x nhé.
b) n^2 + 2n + 6 chia hết cho n +4
=> n(n+4)-2(n+4)+14 chia hết cho n + 4
=> (n+4)(n-2)+14 chia hết cho n + 4
=> 14 chia hết cho n + 4 ( Vì : (n+4)(n-2) chia hết cho n + 4 với mọi STN n )
=> n+4 thuộc Ư(14)= {\(\pm1;\pm2;\pm7;\pm14\)}
Lập bảng giá trị rồi tìm ra x nha bạn
+) \(3\left(n+1\right)+11⋮n+3\)
\(11⋮n+3\)
\(n+3\inƯ\left(11\right)=\left\{1;11\right\}\)
\(n=8\)
+) \(3n+16⋮n+4\)
\(3\left(n+4\right)+4⋮n+4\)
\(4⋮n+4\)
\(n+4\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(n=0\)
+) \(28-7n⋮n+3\)
\(49-7\left(n+3\right)⋮n+3\)
\(49⋮n+3\)
\(n+3\inƯ\left(49\right)=\left\{1;7;49\right\}\)
\(n\in\left\{4;46\right\}\)
a) Có 7n chia hết cho n thì 15 phải chia hết cho n, tức n thuộc tập ước của 15, học sinh tự lập bảng để tìm giá trị của n.
b) n + 28 = n + 4 + 26, có n + 4 chia hết cho n + 4 thì 26 phải chia hết cho n + 4, tức n + 4 thuộc tập ước của 26, học sinh tự lập bảng để tìm giá trị của n
a) Ta có : \(\frac{n+4}{n-1}=\frac{\left(n-1\right)+5}{n-1}=\frac{n-1}{n-1}+\frac{5}{n-1}=1+\frac{5}{n-1}\)
Để \(n+4⋮n-1\Leftrightarrow\frac{5}{n-1}\in N\Leftrightarrow5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)
* Với n - 1 = -1 => n = -1 + 1 = 0 ( thỏa mãn )
* Với n - 1 = 1 => n = 1+ 1 = 2 ( thỏa mãn )
* Với n - 1 = -5 => n = -5 + 1 = -4 ( ko thỏa mãn )
* Với n - 1 = 5 => n = 5 + 1 = 6 ( thỏa mãn )
Vậy với n \(\in\) { 0; 2; 6 } thì n + 4 \(⋮\)n - 1
Các bài còn lại bn làm tương tự như vậy
từ đề bài bạn sẽ có: (2n^2 + 3n + 1) + 2(2n + 3) chia hết cho 2n + 3. Vì 2(2n + 3) chia hết cho 2n + 3 => 2n^2 + 3n + 1 chia hết cho 2n + 3
Hay, bạn sẽ có 2n^2 + 2n + n + 1 = 2n(n +1) + (n+1) = (n+1)(2n +1) chia hết cho 2n + 3. đặt 2n + 3 = a (a khác 0)từ đó bạn sẽ có ((a -1)/2)(a -2) chia hết cho a. ở => (a-1)(a-2)/2 chia hết cho a.
bạn nhận thấy : (a-1)(a-2) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2 => (a-1)(a-2)/2 là số nguyên (với a là 2 số tự nhiên liên tiếp)
xét 2 trường hợp: a = 1 và a = 2 là bạn sẽ tìm ra n
\(a,\Rightarrow n\inƯ\left(5\right)=\left\{1;5\right\}\\ b,\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\\ c,\Rightarrow n\inƯ\left(27\right)=\left\{1;3\right\}\left(n< 7\right)\)
n + 11 chia hết cho n - 1
n - 1 + 12 chia hết cho n - 1
Vậy 12 chia hết cho n - 1
Vậy n thuộc {2;3;4;5;7;13}
7n+26 chia het cho n+3
=> 7n+26_-7*(n+3) chia het cho n+3
=>5 chia cho n+3
=>n+3 thuộc Ư(5)2
giai ra ta duoc
n=2,-2,-8,-4