K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

ta lấy ví dụ 

123123:11=11193

123123:13=9471

123123:7=17589

24 tháng 12 2016

Chứng tỏ rằng : abcabc chia hết cho 11, 13, 7.

         Giải

Ta có: abcabc = abc000 + abc

                      = abc x 1000 + abc

                      = abc x ( 1000 + 1)

                      = abc x 1001

                      = abc x 7 x 11 x 13

 Vậy abcabc là tích của abc với 7; 11; 13 => abcabc chia hết cho 7; 11; 13.

nha bạn :3

18 tháng 10 2017

a) Theo bài ra ta có:
abcabc = 1000abc + abc
             = ( 1000 +1)abc
             =1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
       1001 chia hết cho 7 => abcabc chia hết cho 7.
       1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3

5 tháng 11 2018

Ta có : 

abcabc = 1000abc + abc 

= 1001 . abc 

= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13

24 tháng 9 2015

1) ta co abcabc=abc.1000+abc

= abc.1001 chia hết cho

vi 1001 chia het cho 7;11;13

=> abc.1001 chia het cho 7;11;13

=> abcabc chia het cho 7;11;13

2) trong câu hỏi tương tự nhé

 

6 tháng 7 2017

abcabc = 1001xabc = 11x91xabc = 13x77xabc nên abcabc bao giờ cũng chia hết cho 11 và 13

29 tháng 10 2021

Biết: abcabc = abc. (7.11.13) => (đpcm)

12 tháng 4 2016

Giải:

Ta có: abcabc = abc000  + abc 

                      = abc x 1000 + abc 

                      = abc . (1000 + 1)

                      = abc . 1001

                      = abc . 7 . 11 . 13

Vậy số abcabc là tích của abc với 7; 11; 13 => abcabc chia hết cho 7; 11 và 13

a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)

b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)

c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)

 

18 tháng 10 2015

a)

abcabc=abc.1001

Mà 1001 chia hết cho cả 7 ;11và 13

=>abc.1001 chia hết cho 7;11;13

Hay abcabc chia hết cho 7;11;13

Vậy............................

b)

abcdeg=abc.1000+deg                                                                                     (1)

Thay abc=2.deg vào (1) ta có  :

deg.2.1000+deg

=deg.2001

Mà 2001 cùng chia hết ch0 23 và 29

=>deg.2001 chia hết cho cả 23 và 29

Hay abcdeg chia hết cho 23 và 29

Vậy ......................................

4 tháng 11 2016

vì abcabc=1000abc+abc=1001.abc

mà 1001 chia hết cho 13 nên 

1001.abc chia hết cho 13

=> abcabc chia hết cho 13

4 tháng 11 2016

\(\overline{abcabc}=\overline{abc}\times1001=\overline{abc}\times\left(77\times13\right)=\overline{abc}\times77\times13\)

Vì có thừa số 13 nên \(\overline{abc}\times77\times13\)chia hết cho 13
\(\Rightarrow\overline{abcabc}\)chia hết cho 13 (đpcm)

10 tháng 11 2014

111 chia sao hết cho 11  ???