Ta có x +y+z khác 0 x,y,z khác 0 . Tìm m để đa thức x3+ y3 +z3 +mxyz chia hết cho x+y+z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của vuighe123_oribe - Toán lớp 8 - Học toán với OnlineMath
bạn tham khảo ở trên nhé
Từ \(x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{z}+\dfrac{1}{x}\right)+z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\) ta có:
\(x^2y+y^2z+z^2x+xy^2+yz^2+zx^2+2xyz=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\).
Không mất tính tổng quát, giả sử x + y = 0
\(\Leftrightarrow x=-y\)
\(\Leftrightarrow x^3=-y^3\).
Kết hợp với \(x^3+y^3+z^3=1\) ta có \(z^3=1\Leftrightarrow z=1\).
Vậy \(P=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{-y}+\dfrac{1}{y}+\dfrac{1}{1}=1\).
Áp dụng bđt AM - GM:
\(x^3+1+1\ge3x;y^3+1+1\ge3y;z^3+1+1\ge3z;2x+2y+2z\ge6\sqrt[3]{xyz}=6\).
Cộng vế với vế các bđt trên rồi rút gọn ta có đpcm.
Lời giải:
Ta có:
\(x^3+y^3+z^3+mxyz=(x+y+z)^3-3(x+y)(y+z)(x+z)+mxyz\)
\(=(x+y+z)^3-3[xy(x+y)+yz(y+z)+xz(x+z)+2xyz]+mxyz\)
\(=(x+y+z)^3-3[xy(x+y+z)+yz(x+y+z)+xz(x+y+z)-xyz]+mxyz\)
\(=(x+y+z)^3-3(x+y+z)(xy+yz+xz)+3xyz+mxyz\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+(m+3)xyz\)
Như vậy, để \(x^3+y^3+z^3+mxyz\vdots x+y+z, \forall x,y,z\) thì \((m+3)xyz\vdots x+y+z, \forall x,y,z\)
\(\Rightarrow m+3=0\Rightarrow m=-3\)
Cách khác :
Đặt : \(F=x^3+y^3+z^3+mxyz\)
Xem F là một đa thức theo x , kí hiệu : \(F\left(x\right)\)
Vì : \(\left(x+y+z\right)=x-\left(-y-z\right)\) và \(F\) ⋮ \(\left(x+y+z\right)\)
⇒ \(F\left(x\right)\text{⋮}\left[x-\left(-y-z\right)\right]\)
⇒ \(F\left(-y-z\right)=0\) ⇔ \(\left(-y-z\right)^3+y^3+z^3+m\left(-y-z\right)yz=0\)
⇔ \(-3yz\left(y+z\right)+m\left(-y-z\right)yz=0\)
⇔ \(-3yz\left(y+z\right)-m\left(y+z\right)yz\)
⇔ \(-yz\left(y+z\right)\left(m+3\right)=0\)
Đẳng thức trên đúng ∀y,z ⇔ m = - 3
\(x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)
\(\Leftrightarrow x^2+y^2+z^2-xy-xz-yz=0\)
\(\Leftrightarrow x=y=z\)
Ta có: ( x - y) z3 + ( y - z ) x3 + ( z - x ) y3
= ( x - y ) z3 + ( y - z )x3 + ( z - y)y3 + ( y - x ) y3
= ( x - y ) ( z3 - y3 ) + ( y - z ) ( x3 - y3)
= ( x - y ) ( z - y ) ( z2 + zy + y2 ) + ( y - z ) ( x - y) ( x2 + xy + y2 )
= ( x - y ) ( y - z ) ( x2 + xy + y2 - z2 - zy - y2)
= ( x - y ) ( y - z ) [ ( x2 - z2) + ( xy - zy) ]
= ( x - y ) ( y - z ) [ ( x - z ) ( x + z ) + y ( x - z ) ]
= ( x - y ) ( y - z ) ( x - z ) ( x + y + z )
đặt phép chia ,để phép chia là phép chia hết thì dư=0 .....=>m=-3
hoặc có thể dễ nhận thấy m=-3 sẽ có hđt x^3+y^3+z^3-3xyz =(x+y+z)(x^2+y^2+z^2-xy-yz-zx) chia hết cho (x+y+z)