K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

đặt phép chia ,để phép chia là phép chia hết thì dư=0 .....=>m=-3

hoặc có thể dễ nhận thấy m=-3 sẽ có hđt x^3+y^3+z^3-3xyz =(x+y+z)(x^2+y^2+z^2-xy-yz-zx) chia hết cho (x+y+z)

10 tháng 8 2019
  • Quẵng đường viên bi A dơi trong 4s là: \(S_{A\left(4s\right)}=\frac{1}{2}\cdot10\cdot4^2=80\left(m\right)\)
  • Vì sau khi bi A rơi được 4 giây thì khoảng cách giữa hai viên bi là 35m nên quãng đường bi B dơi là: \(S_{B\left(4-\Delta t\right)}=80-35=45\left(m\right)\)
  • Suy ra: \(S_{B\left(4-\Delta t\right)}=\frac{1}{2}\cdot10\cdot\left(4-\Delta t\right)^2=45\\ \Rightarrow\left(4-\Delta t\right)^2=9\\ \Rightarrow4-\Delta t=3\Rightarrow\Delta t=1\left(s\right)\)
1 tháng 6 2018

Câu hỏi của vuighe123_oribe - Toán lớp 8 - Học toán với OnlineMath

bạn tham khảo ở trên nhé

19 tháng 12 2020

Từ \(x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{z}+\dfrac{1}{x}\right)+z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\) ta có:

\(x^2y+y^2z+z^2x+xy^2+yz^2+zx^2+2xyz=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\).

Không mất tính tổng quát, giả sử x + y = 0

\(\Leftrightarrow x=-y\)

\(\Leftrightarrow x^3=-y^3\).

Kết hợp với \(x^3+y^3+z^3=1\) ta có \(z^3=1\Leftrightarrow z=1\).

Vậy \(P=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{-y}+\dfrac{1}{y}+\dfrac{1}{1}=1\).

 

 

20 tháng 1 2021

Áp dụng bđt AM - GM:

\(x^3+1+1\ge3x;y^3+1+1\ge3y;z^3+1+1\ge3z;2x+2y+2z\ge6\sqrt[3]{xyz}=6\).

Cộng vế với vế các bđt trên rồi rút gọn ta có đpcm.

20 tháng 1 2021

Áp dụng BĐT Cosi:

\(\left(x^3+1+1\right)+\left(y^3+1+1\right)+\left(z^3+1+1\right)\)

\(\ge3\left(x+y+z\right)\)

\(\ge x+y+z+2.3\sqrt[3]{xyz}\)

\(=x+y+z+6\)

\(\Rightarrow x^3+y^3+z^3\ge x+y+z\)

Đẳng thức xảy ra khi \(x=y=z=1\)

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

Lời giải:

Ta có:

\(x^3+y^3+z^3+mxyz=(x+y+z)^3-3(x+y)(y+z)(x+z)+mxyz\)

\(=(x+y+z)^3-3[xy(x+y)+yz(y+z)+xz(x+z)+2xyz]+mxyz\)

\(=(x+y+z)^3-3[xy(x+y+z)+yz(x+y+z)+xz(x+y+z)-xyz]+mxyz\)

\(=(x+y+z)^3-3(x+y+z)(xy+yz+xz)+3xyz+mxyz\)

\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+(m+3)xyz\)

Như vậy, để \(x^3+y^3+z^3+mxyz\vdots x+y+z, \forall x,y,z\) thì \((m+3)xyz\vdots x+y+z, \forall x,y,z\)

\(\Rightarrow m+3=0\Rightarrow m=-3\)

5 tháng 7 2018

Cách khác :

Đặt : \(F=x^3+y^3+z^3+mxyz\)

Xem F là một đa thức theo x , kí hiệu : \(F\left(x\right)\)

Vì : \(\left(x+y+z\right)=x-\left(-y-z\right)\)\(F\)\(\left(x+y+z\right)\)

\(F\left(x\right)\text{⋮}\left[x-\left(-y-z\right)\right]\)

\(F\left(-y-z\right)=0\)\(\left(-y-z\right)^3+y^3+z^3+m\left(-y-z\right)yz=0\)

\(-3yz\left(y+z\right)+m\left(-y-z\right)yz=0\)

\(-3yz\left(y+z\right)-m\left(y+z\right)yz\)

\(-yz\left(y+z\right)\left(m+3\right)=0\)

Đẳng thức trên đúng ∀y,z ⇔ m = - 3

27 tháng 10 2021

\(x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)

\(\Leftrightarrow x^2+y^2+z^2-xy-xz-yz=0\)

\(\Leftrightarrow x=y=z\)

13 tháng 8 2020

Ta có: ( x - y) z3 + ( y - z ) x3 + ( z - x ) y 

= ( x - y ) z3 + ( y - z )x3 + ( z - y)y3 + ( y - x ) y3

= ( x - y ) ( z3 - y) + ( y - z ) ( x3 - y3

= ( x - y ) ( z - y ) ( z2 + zy + y2 ) + ( y - z ) ( x - y) ( x2 + xy + y2 ) 

= ( x - y ) ( y - z ) ( x2 + xy + y2 - z2 - zy - y2

= ( x - y ) ( y - z ) [ ( x2 - z2) + ( xy - zy) ]

= ( x - y ) ( y - z ) [ ( x - z ) ( x + z ) + y ( x - z ) ]

= ( x - y ) ( y - z ) ( x - z ) ( x + y + z )