K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi E là trung điểm của BC

=>A,G,E thẳng hàng và AG=2GE

Xét ΔEABcó GM//AB

nên BM/BE=AG/AE=2/3

=>BM=2/3BE=2/3*1/2BC=1/3BC

b: Xét ΔEAC có GN//AC
nên CN/CE=AG/AE=2/3

=>CN=2/3*CE=2/3*1/2BC=1/3BC

MN=BC-BM-CN=1/3BC

=>BM=MN=NC

24 tháng 2 2023

G là trung điểm mà

16 tháng 3 2015

T/g BMN đồng dạng vs t/g BAC theo tỉ số 2/3 => C(BMN) = 2/3 C(BAC) = 50cm

\(\frac{MB}{AB}=\frac{2}{3}\Rightarrow\frac{MB}{AB-MB}=\frac{MB}{AM}=\frac{2}{3-2}=2\Rightarrow MB=2AM\)

tương tự, BN=2NC

MN = C(BMN) - BM - BN = 50 - 2(AM+NC) = 18cm

 

16 tháng 1

 

Xét 2 tam giác AMG và ABH ta có:

\(\widehat{BAH}\) chung 

\(\widehat{AMG}=\widehat{ABH}\) (cặp góc đồng vị do BH//MG) 

\(\Rightarrow\Delta AMG\sim\Delta ABH\left(g.g\right)\) 

\(\Rightarrow\dfrac{AB}{AM}=\dfrac{AH}{AG}\) (1) 

Xét 2 tam giác ANG và ACK có:

\(\widehat{CAK}\) chung 

\(\widehat{ANG}=\widehat{ACK}\) (cặp góc đồng vị do CK//GN) 

\(\Rightarrow\Delta ANG\sim\Delta ACK\left(g.g\right)\)

\(\Rightarrow\dfrac{AC}{AN}=\dfrac{AK}{AG}\) (2) 

Xét hai tam giác BOH và COK ta có: 

\(\widehat{BOH}=\widehat{COK}\) (đối đỉnh) 

\(BO=CO\) (AO là đường trung tuyến nên O là trung điểm của BC) 

\(\widehat{HBO}=\widehat{KCO}\) (so le trong vì BH//MN và CK//MN ⇒ BH//CK) 

\(\Rightarrow\Delta BOH=\Delta COK\left(g.c.g\right)\) 

\(\Rightarrow HO=OK\) (hai cạnh t.ứng) 

\(\Rightarrow HK=2HO\)

Ta lấy (1) + (2) \(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{AH+AK}{AG}=\dfrac{AH+AH+HK}{AG}=\dfrac{2AH+HK}{AG}\) 

\(=\dfrac{2AH+2HO}{AG}=\dfrac{2\left(AH+HO\right)}{AG}=\dfrac{2AO}{AG}\) 

Mà G là trọng tâm của tam giác ABC \(\Rightarrow AO=\dfrac{3}{2}AG\) 

\(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{2\cdot\dfrac{3}{2}AG}{AG}=2\cdot\dfrac{3}{2}=3\left(đpcm\right)\)  

23 tháng 2 2020

A B C G M N

23 tháng 2 2020

Gọi tđ BC là I ,MG//AB -Thales ta có \(\frac{MI}{BM}=\frac{GI}{AG}=\frac{1}{2}\left(1\right)\)

Lại có NG//AC nên \(\frac{IN}{NC}=\frac{GI}{AG}=\frac{1}{2}\left(2\right)\)

Từ (1) có BM=2MI, Tư f (2) có NC=2NI

Ta có MG//AB,NG//AC nên \(\frac{MI}{BI}=\frac{NI}{CI}=\frac{IG}{AI},BI=CI\Rightarrow MI=NI\)\(\Rightarrow BM=NC=MI+NI=MN\)

12 tháng 3 2021

Dễ thấy H là trực tâm của tam giác ABC.

a) Bỏ qua

b) Gọi T là trung điểm của HC.

Ta có NT là đường trung bình của tam giác AHC nên NT // AH. Suy ra NT // OM.

TM là đường trung bình của tam giác BHC nên MT // BH. Suy ra  MT // ON.

Từ đó tứ giác NTMO là hình bình hành nên OM = NT = \(\dfrac{AH}{2}\).

Xét \(\Delta AHG\) và \(\Delta MOG\) có: \(\widehat{HAG}=\widehat{OMG}\) (so le trong, AH // OM) và \(\dfrac{AH}{MO}=\dfrac{AG}{MG}\left(=2\right)\).

Do đó \(\Delta AHG\sim\Delta MOG\left(c.g.c\right)\).

c) Do \(\Delta AHG\sim\Delta MOG\left(c.g.c\right)\) nên \(\widehat{AGH}=\widehat{MGO}\), do đó H, G, O thẳng hàng.

 

 

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với...
Đọc tiếp

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.

Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.

Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:

a, tam giác GPI và tam giác GNC đồng dạng.

b, IC vuông góc với GI.

Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:

a,Tam giác IHE và tam giác BHA đồng dạng.

b, Tam giác BHI và tam giác AHE đồng dạng.

c, AE vuông góc với BI.

LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘

 

0