Tìm x,y thuộc Z sao cho
a) 3x + 1 chia hết cho x - 2
b) 2x +xy + y = 4
mik đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:a) Ta có: \(1-3x⋮x-2\)
\(\Leftrightarrow-3x+1⋮x-2\)
\(\Leftrightarrow-3x+6-5⋮x-2\)
mà \(-3x+6⋮x-2\)
nên \(-5⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(-5\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)
Vậy: \(x\in\left\{3;1;7;-3\right\}\)
b) Ta có: \(3x+2⋮2x+1\)
\(\Leftrightarrow2\left(3x+2\right)⋮2x+1\)
\(\Leftrightarrow6x+4⋮2x+1\)
\(\Leftrightarrow6x+3+1⋮2x+1\)
mà \(6x+3⋮2x+1\)
nên \(1⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(1\right)\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2x\in\left\{0;-2\right\}\)
hay \(x\in\left\{0;-1\right\}\)
Vậy: \(x\in\left\{0;-1\right\}\)
Bài 1 :
a, Có : \(1-3x⋮x-2\)
\(\Rightarrow-3x+6-5⋮x-2\)
\(\Rightarrow-3\left(x-2\right)-5⋮x-2\)
- Thấy -3 ( x - 2 ) chia hết cho x - 2
\(\Rightarrow-5⋮x-2\)
- Để thỏa mãn yc đề bài thì : \(x-2\inƯ_{\left(-5\right)}\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)
Vậy ...
b, Có : \(3x+2⋮2x+1\)
\(\Leftrightarrow3x+1,5+0,5⋮2x+1\)
\(\Leftrightarrow1,5\left(2x+1\right)+0,5⋮2x+1\)
- Thấy 1,5 ( 2x +1 ) chia hết cho 2x+1
\(\Rightarrow1⋮2x+1\)
- Để thỏa mãn yc đề bài thì : \(2x+1\inƯ_{\left(1\right)}\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow x\in\left\{0;-1\right\}\)
Vậy ...
a) \(x+xy-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)
\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)
\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)
Lập bảng tìm tiếp
b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)
Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ...
a,x+1 chia hết cho 2x+3
=>2(x+1)chia hết cho 2x+3
=>2x+2 chia hết cho 2x+3
=>(2x+3)-1chia hết cho 2x+3
=>1chia hết cho 2x+3
do x thuộc Z =>2x+3 thuộc Z
=>2x+3 thuộc {1;-1}
=>2x thuộc {-2;-4}
=>x thuộc {-1;-2} Thử lại...
b,2x-3 chia hết cho 3x+1
=>3(2x-3)chia hết cho 3x+1
=>6x-9chia hết cho 3x+1
=>(6x+2)-11 chia hết cho 3x+1
do 6x+2 chia hết cho 3x+1
=>11 chia hết cho 3x+1
x thuộc Z =>3x+1 thuộc Z=>3x+1 thuộc Z=>3x+1 thuộc{1;-1;11;-11}
k mình nha !
cảm ơn cậu nhé cậu k mình cho mình lên điểm hỏi đáp được không
a. x + xy + y = 9
=> xy + x + y - 9 = 0
=> xy + x + y + 1 - 10 = 0
=> x.(y + 1) + (y + 1) = 10
=> (y + 1).(x + 1) = 10
Lập bảng:
x + 1 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
x | -11 | -6 | -3 | -2 | 0 | 1 | 4 | 9 |
y + 1 | -1 | -2 | -5 | -10 | 10 | 5 | 2 | 1 |
y | -2 | -3 | -6 | -11 | 9 | 4 | 1 | 0 |
Vậy các cặp (x;y) thỏa là: (-11;-2); (-6;-3); (-3;-6); (-2;-11); (0;9); (1;4); (4;1); (9;0).
b. 3x + 2 chia hết cho 2x + 1
=> 2.(3x + 2) chia hết cho 2x + 1
=> 6x + 4 chia hết cho 2x + 1
=> (6x + 4 - 2x - 1) chia hết cho 2x + 1
=> 4x + 3 chia hết cho 2x + 1
=> 4x + 2 + 1 chia hết cho 2x + 1
=> 2.(2x + 1) + 1 chia hết cho 2x + 1
Mà 2.(2x + 1) chia hết cho 2x + 1
=> 1 chia hết cho 2x + 1
=> 2x + 1 thuộc Ư(1) = {-1; 1}
=> x thuộc {-1; 0}.
Mà x thuộc Z
=> x thuộc {-1; 0}.
a. x + xy + y = 9
=> xy + x + y - 9 = 0
=> xy + x + y + 1 - 10 = 0
=> x.(y + 1) + (y + 1) = 10
=> (y + 1).(x + 1) = 10
Lập bảng:
x + 1 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
x | -11 | -6 | -3 | -2 | 0 | 1 | 4 | 9 |
y + 1 | -1 | -2 | -5 | -10 | 10 | 5 | 2 | 1 |
y | -2 | -3 | -6 | -11 | 9 | 4 | 1 | 0 |
Vậy các cặp (x;y) thỏa là: (-11;-2); (-6;-3); (-3;-6); (-2;-11); (0;9); (1;4); (4;1); (9;0).
b. 3x + 3 chia hết cho 2x + 1
=> 2.(3x + 3) chia hết cho 2x + 1
=> 6x + 6 chia hết cho 2x + 1
=> (6x + 6 - 2x - 1) chia hết cho 2x + 1
=> 4x + 6 chia hết cho 2x + 1
=> 4x + 2 + 4 chia hết cho 2x + 1
=> 2.(2x + 1) + 4 chia hết cho 2x + 1
Mà 2.(2x + 1) chia hết cho 2x + 1
=> 4 chia hết cho 2x + 1
=> 2x + 1 thuộc Ư(4) = {-4; -2; -1; 1; 2; 4}
=> x thuộc {-5/2; -3/2; -1; 0; 1/2; 3/2}
Mà x thuộc Z
=> x thuộc {-1; 0}.
b) \(3x+9=3x+6+3=3\left(x+2\right)+3⋮\left(x+2\right)\Leftrightarrow3⋮\left(x+2\right)\)
\(\Leftrightarrow x+2\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\Leftrightarrow x\in\left\{-5,-3,-1,1\right\}\).
a), c) tương tự.
d) \(\left(2x+1\right)⋮\left(3x-1\right)\Rightarrow3\left(2x+1\right)=6x+3=6x-2+5=2\left(3x-1\right)+5⋮\left(3x-1\right)\)
\(\Leftrightarrow5⋮\left(3x-1\right)\Leftrightarrow3x-1\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\Leftrightarrow x\in\left\{0,2\right\}\)(vì \(x\)nguyên)
Thử lại đều thỏa mãn.
a) ta có: 3x + 5 chia hết cho x + 1
=> 3x + 3 + 2 chia hết cho x + 1
3.(x+1) + 2 chia hết cho x + 1
mà 3.(x+1) chia hết cho x + 1
=> 2 chia hết cho x + 1
...
bn tự làm tiếp nha! phần b làm tương tự
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
(a): `3x+1` \(⋮\) `(x-2)`
`=>3(x-2)+7` \(⋮\) `(x-2)`
`=>7` \(⋮\) `(x-2)`
`=>x-2\in {1;7;-1;-7}`
`=>x\in {3;9;1;-5}`
(b): `2x+xy+y=4`
`=>x(2+y)+(2+y)=4+2`
`=>(y+2)(x+1)=6=1.6=2.3=(-1).(-6)=(-2).(-3)`
Lập bảng ....
câu b mik thấy nó đã ra KQ đâu