CMR: (n+1)(n+8)+21 ko chia hết cho 49
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = n^2 + n + 8n + 8 + 21
= n^2 + 9n + 29
4A = 4n^2 + 36n + 116 = (2n+9)^2 + 35
Gia sử A chia hết cho 49 => 4A chia hết cho 49
=>A chia hết cho 7 => (2n+9)^2 + 35 chia hết cho 7
=> (2n+9)^2 chia hết cho 7 (vì 35 chia hết cho 7)
=> 2n+9 chia hết cho 7 => (2n+9)^2 chia hết cho 49 ( vì 7 nguyên tố)
=> 4A= (2n+9)^2 + 35 ko chia hết cho 49 ( mâu thuẫn giả sử) => A ko chia hết cho 49
Vậy A ko chia hết cho 49
a)
(n+1)(n+2)+12
=(n+1)*n+(n+1)*2+12
=n 2+1n+2n+2+12
=n 2+(1+2)n+(2+12)
=n 2+3n+14
=n*n+3n+14
=n(n+3)+14
Vì 14 không chia hết cho 9 nên n(n+3) không chia hết cho 9
nên n(n+3)+14 không chia hết cho 9
nên (n+1)(n+2)+12 không chia hết cho 9 với mọi n
Vậy với mọi n thuộc Z thì (n+1)(n+2)+12 không chia hết cho 9
phần b mình chưa nghĩ ra
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Câu a :
Chứng minh rằng : (n-1 ) (n+2) + 12 không chia hết cho 9
Giã thiết biểu thức : (n-1 ) (n+2) + 12 chia hết cho 9 .
Đặt A = (n-1 ) (n+2) + 12 , nên A = 9 hoặc bội số của 9 .
Ta có : A = (n-1 ) (n+2) + 12
A = n x n + n x 2 - n - 2 + 12
A = n x n + n + 10 A = n x (n + 1) + 10
A - 10 = n x (n + 1)
Vì theo giã thiết A là 9 hoặc bội số của 9 nên A chia hết cho 9 .
Vậy Nếu A bớt đi 9 thì A -9 sẽ chia hết cho 9 , nhưng kết quả biểu thức trên là :
A - 10 = n x (n + 1) mà A - 10 không chia hết cho 9 .
Vậy A - 10 = n x (n + 1) không chia hết cho 9 .
Hay (n-1 ) (n+2) + 12 không chia hết cho 9
Câu b :
Chứng minh rằng : ( n + 2 ) ( n +9 )+21 không chia hết cho 49
Muốn biểu thức ( n + 2 ) ( n +9 ) + 21 chia hết cho 49 thì biểu thức này = 49 hay bội số của 49.
Đặt : A = ( n + 2 ) ( n +9 ) + 21 ( A là bội số của 49) ta có :
A = ( n + 2 ) ( n +9 ) + 21
A = n x n + 9 x n + 2 x n + 18 + 21
A = n x n + 11 x n + 39
A - 39 = n x ( n + 11)
Vì giã thiết A là bội của 49 nên A - 39 không thể chia hết cho 49 nên
A = ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Vậy : ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Nguồn :Toán Tiểu Học Pl
b)
Chứng minh rằng : ( n + 2 ) ( n +9 )+21 không chia hết cho 49
Muốn biểu thức ( n + 2 ) ( n +9 ) + 21 chia hết cho 49 thì biểu thức này = 49 hay bội số của 49.
Đặt : A = ( n + 2 ) ( n +9 ) + 21 ( A là bội số của 49) ta có :
A = ( n + 2 ) ( n +9 ) + 21
A = n x n + 9 x n + 2 x n + 18 + 21
A = n x n + 11 x n + 39
A - 39 = n x ( n + 11)
Vì giã thiết A là bội của 49 nên A - 39 không thể chia hết cho 49 nên
A = ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Vậy : ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Ta có : (n + 1 ) + ( n + 8 ) + 21
= n + 1 + n + 8 + 21 = ( n + n ) + ( 1 + 8 + 21 )
= 2n + 30
2n + 30 chia hết cho 49 khi 2n chia hết cho 49 ; 30 chia hết cho 49.
Mà 30 không chia hết cho 49 => 2n + 30 không chia hết cho 49
=> ( n + 1 ) + ( n + 8 ) + 21 không chia hết cho 49 với mọi số tự nhiên n.
Bạn Phạm Thị Quỳnh trả lời sai rồi ( n + 1 ) ( n + 8 ) giữa 2 số này là dấu nhân chứ ko phải dấu cộng nha
Câu hỏi của Nguyễn Anh Tuấn - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài này nhé.