K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2022

tham khảo:

Đặt t = x + 3
=> x + 2 = t - 1; x + 4 = t + 1.
ta có pt: (t - 1)^4 + (t + 1)^4 = 82
<=>[(t -1)²]² + [(t + 1)²]² = 82
<=> (t² - 2t + 1)² + (t² + 2t + 1)² = 82
<=> (t²+1)² - 4t(t²+1) + 4t² + (t²+1)² + 4t(t²+1) + 4t² = 82
<=> (t² + 1)² + 4t² = 41
<=> t^4 + 6t² + 1 = 41
<=> (t²)² + 6t² - 40 = 0
<=> t² = -10 (loại) hoặc t² = 4
<=> t = 2 hoặc t = -2
với t = -2 => x = -5
với t = 2 => x = -1
vậy pt có hai nghiệm là : x = -1 hoặc x = -5

25 tháng 2 2022

-Chúc mừng lên Thiếu tá he. Chắc tui còn lâu mới lên được á. Cộng thêm nick kia chắc có được 3 sao à.

14 tháng 10 2020

Giải bằng phương pháp hàm số tức là sử dụng đạo hàm để khảo sát đặc điểm của hàm số (tính đơn điệu, cực trị, ... ) bạn nhé.
Đặt f(x)=\(x^5+x^3-\sqrt{1-3x}+4\) với tập xác định \(D=(-\infty;\frac{1}{3}]\)
Xét đạo hàm f'(x) = \(5x^4+3x^2+\frac{3}{2\sqrt{1-3x}}>0\)\(\forall x\in D\)

Từ đó suy ra hàm số y=f(x) đồng biến trên tập xác định D của nó. Suy ra hàm số NẾU có nghiệm thì chỉ có duy nhất một nghiệm.
Mà ta lại nhẩm được f(-1)=0. Vậy phương trình có nghiệm duy nhất \(x=-1\)

2 tháng 9 2021

\(a.\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)( x lớn hơn hoặc =1)
\(\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}\)+2=0
\(\sqrt{x-1}\left(1+\sqrt{4}-\sqrt{25}\right)=-2\)
\(\sqrt{x-1}\left(1+2-5\right)=-2\)
\(\sqrt{x-1}.\left(-2\right)=-2\)
\(\sqrt{x-1}=-2.2\)
\(\sqrt{x-1}-4\)(ko thỏa mãn)
b)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9\left(x-1\right)}+24\dfrac{\sqrt{x-1}}{8}=-17\)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}.3\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\left(\dfrac{1}{2}-\dfrac{9}{2}+3\right)\sqrt{x-1}=-17\)
\(7\sqrt{x-1}=-17\)
\(\sqrt{x-1}=-\dfrac{17}{7}\)(ko thỏa mãn căn bậc 2 ko có số âm)

a: Ta có: \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=-2\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow x-1=1\)

hay x=2

11 tháng 7 2019

Đặt x-4=t

x-2=t+2

x-6 = t - 2

pt <=> (t+2)4 + (t-2)4 = 82

<=> (t2+4+4t)2 + (t2+4 -4t)2 =82

<=> (t2+4)2 +8t(t2+1)+16t2 + (t2+4)2 - 8t(t2+1)+16t2 =82

<=> (t2+4)2 + 16t2 =41

<=> t4 + 24t2 +16 -41 = 0 <=> \(\left[{}\begin{matrix}t^2=1\\t^2=-25\left(loai\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)

31 tháng 5 2019

\(\frac{1000}{x}-\frac{1000}{x+10}=5\)

\(1000\left(\frac{1}{x}-\frac{1}{x+10}\right)=5\)

\(\frac{x+10-x}{x\left(x+10\right)}=\frac{5}{1000}\)

\(\frac{10}{x^2+10x}=\frac{1}{200}\)

\(x^2+10x-200=0\)

\(x^2-10x+20x-200=0\)

\(x\left(x-10\right)+20\left(x-10\right)=0\)

\(\left(x+20\right)\left(x-10\right)=0\)

=>x=-20 hoặc x=10

24 tháng 2 2018

\(\left(x+4\right)^4+\left(x+6\right)^4=82\)

Đặt a = x + 5

Ta có:

\(\left(x+4\right)^4+\left(x+6\right)^4=82\)

\(\Leftrightarrow\left(a-1\right)^4+\left(a+1\right)^4\)

\(\Leftrightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=82\)

\(\Leftrightarrow\left(a^2-2a+1\right)^2+\left(a+2a+1\right)^2=82\)

\(\Leftrightarrow\left(a^2+1\right)^2-4a\left(a^2+1\right)+4a^2+\left(a^2+1\right)^2+4a\left(a^2+a\right)+4a^2=82\) \(\Leftrightarrow\left(a^2+1\right)^2+4a^2=41\)

\(\Leftrightarrow a^4+6a^2+1=41\)

\(\Leftrightarrow a^4+6a^2-40a=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a^2=-10\left(loại\right)\\a^2=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-7\end{matrix}\right.\)

24 tháng 2 2018

khúc \(a^4+6a^2-40\) bạn làm hơi nhanh, mà thôi kệ. Thanks!!!