K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2015

a) góc MAN nội tiếp chắn nửa (O) => góc MAN = 900 hay góc CAD = 900

tam giác CAD vuông tại A có đường cao AB => AM.AC = AB2 = 4R2 không đổi

b) Tam giác OAN có OA = ON = R nên cân tại O => góc OAN = góc ONA hay góc BAD = góc MNA

mà góc BAD = góc ACD (cùng phụ góc BAC) => góc MNA = góc ACD => tứ giác CMND nội tiếp

c) tam giác ACD vuông tại A có AI là trung tuyến => IA = ID = 1/2 CD => tam giác IAD cân tại I => góc IAD = góc IDA

mà góc IDA = góc AMN( tứ giác CMND nội tiếp) => góc IAD = góc AMN mà góc AMD phụ góc MNA => góc IAD phụ góc MNA 

=> góc AHN = 90hay góc AHO = 900 , mà OA = R không đổi => H nằm trên đường tròn đường kính AO

30 tháng 3 2017

a﴿ góc MAN nội tiếp chắn nửa ﴾O﴿ => góc MAN = 90o hay góc CAD = 90o

tam giác CAD vuông tại A có đường cao AB => AM.AC = AB 2 = 4R 2 không đổi

b﴿ Tam giác OAN có OA = ON = R nên cân tại O => góc OAN = góc ONA hay góc BAD = góc MNA

mà góc BAD = góc ACD ﴾cùng phụ góc BAC﴿ => góc MNA = góc ACD => tứ giác CMND nội tiếp

c﴿ tam giác ACD vuông tại A có AI là trung tuyến => IA = ID = 1/2 CD => tam giác IAD cân tại I => góc IAD = góc IDA

mà góc IDA = góc AMN﴾ tứ giác CMND nội tiếp﴿

=> góc IAD = góc AMN mà góc AMD phụ góc MNA => góc IAD phụ góc MNA

=> góc AHN = 90 0 hay góc AHO = 90 0 , mà OA = R không đổi => H nằm trên đường tròn đường kính AO 

a: góc MAI+góc MEI=180 độ

=>MAIE nội tiếp

b: AMEI nội tiếp

=>góc EAI=góc EMI=góc EIN

IENB nội tiếp

=>góc EIN=góc EBN

=>góc EAI=góc EBN

IENB nội tiếp

=>góc AIE=góc BNE

=>ΔAIE đồng dạng vơi ΔBNE

=>AI*NE=IE*NB

=>IB*NE=3*IE*NB

a: Sửa đề: AC+BD=DC

Xét (O) có

CA,MC là tiếp tuyên

=>CA=CM và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB và OD là phân giác của góc MOB(2)

AC+BD=CM+MD=CD

b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ

=>ΔOCD vuông tại O

Cho đường tròn \(\left(O;R\right)\) và 2 đường kính \(AB\) và \(CD\) sao cho tiếp tuyến tại \(A\) của đường tròn \(\left(O;R\right)\) cắt các đường thẳng \(BC\) và \(BD\) tại hai điểm tương ứng là \(E\) và \(F\). Gọi \(P\) và \(Q\) lần lượt là trung điểm của các đoạn thẳng \(AE\) và \(AF\). \(a\)) Chứng minh rằng trực tâm \(H\) của tam giác \(BPQ\) là trung điểm của đoạn thẳng \(OA\). \(b\)) Gọi \(\alpha\) là số đo góc...
Đọc tiếp

Cho đường tròn \(\left(O;R\right)\) và 2 đường kính \(AB\) và \(CD\) sao cho tiếp tuyến tại \(A\) của đường tròn \(\left(O;R\right)\) cắt các đường thẳng \(BC\) và \(BD\) tại hai điểm tương ứng là \(E\) và \(F\). Gọi \(P\) và \(Q\) lần lượt là trung điểm của các đoạn thẳng \(AE\) và \(AF\).
\(a\)) Chứng minh rằng trực tâm \(H\) của tam giác \(BPQ\) là trung điểm của đoạn thẳng \(OA\).
\(b\)) Gọi \(\alpha\) là số đo góc \(BFE\). Hai đường kính \(AB\)\(CD\)​ thỏa mãn điều kiện gì thì biểu thức: \(P=\sin^6\alpha+\cos^6\alpha\) đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
\(c\)) Chứng minh các hệ thức sau: \(CE\cdot DF\cdot EF=CD^3\) và \(\dfrac{BE^3}{BF^3}=\dfrac{CE}{DF}\)

1
12 tháng 11 2023

a) Định nghĩa lại H là trung điểm OA. Ta thấy OQ là đường trung bình của tam giác ABF nên OQ//BF. Hơn nữa \(BF\perp BE\) nên \(OQ\perp BE\). Lại có \(BA\perp QE\) nên O là trực tâm của tam giác BEQ \(\Rightarrow OE\perp BQ\)

 Mặt khác, PH là đường trung bình của tam giác AOE nên PH//OA. Do đó, \(PH\perp BQ\). Lại thấy rằng \(BH\perp PQ\) nên H là trực tâm tam giác BPQ (đpcm)

 b) Ta có \(P=\sin^6\alpha+\cos^6\alpha\) 

\(=\left(\sin^2\alpha\right)^3+\left(\cos^2\alpha\right)^3\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)\left(\sin^4\alpha+\cos^4\alpha-\sin^2\alpha\cos^2\alpha\right)\)

\(=1.\left[\left(\sin^2\alpha+\cos^2\alpha\right)^2-3\sin^2\alpha\cos^2\alpha\right]\)

\(=1-3\sin^2\alpha\cos^2\alpha\)

\(\le1-3.\dfrac{\left(\sin^2\alpha+\cos^2\alpha\right)^2}{4}\)

\(=\dfrac{1}{4}\)

 Dấu "=" xảy ra \(\Leftrightarrow\sin\alpha=\cos\alpha\) \(\Leftrightarrow\alpha=45^o\) hay 2 dây AB, CD vuông góc với nhau.

Vậy \(min_P=\dfrac{1}{4}\)

c) Ta có \(\left\{{}\begin{matrix}EC.EB=EA^2\\FD.FB=FA^2\end{matrix}\right.\)  (hệ thức lượng trong tam giác vuông)

\(\Rightarrow EC.EB.FD.FB=\left(EA.FA\right)^2\)

\(\Rightarrow EC.FD.\left(EB.DB\right)=AB^4\)

\(\Rightarrow EC.FD.\left(EF.AB\right)=AB^4\)

\(\Rightarrow EC.FD.EF=AB^3=CD^3\) (đpcm)

Ta có \(EC.DF=AC.AD=BC.BD\)

\(\Rightarrow\dfrac{EC}{DF}=\dfrac{BC.BD}{DF^2}\) 

\(=\dfrac{BC}{DF}.\dfrac{BD}{DF}\) 

\(=\dfrac{BE}{BF}.\dfrac{AC}{DF}\) 

\(=\dfrac{BE}{BF}.\dfrac{AE}{AF}\)

\(=\left(\dfrac{BE}{BF}\right)^3\)

Ta có đpcm.

Bài khá căng đấy

20 tháng 7 2017

Hình mình ko tiện vẽ nên có thể hơi khó hiểu
a) xét t/g EAB có : P tđ AE, O tđ AB => OP//EB. mà EP vuông góc FB => PO vuông góc FB

xét t/g PFB có PO là đường cao, BA là đường cao, BA giao PO tại O

 => O là trực tâm t/g => FO vuông góc PB. Mà QH vuông góc PB => QH//OF
xét t/g AFO có Q tđ AF, QH//OF => H tđ OA (đpcm)

b) Xét t/g CBD có : BO= 1/2 CD (=R) , BO là trung tuyến => t/g CBD vuông tại B
Xét t/g EBF có: EBF = 90 độ, BA là đường cao => AB^2 = AE.AF
Ta có: AE.AF ≤ (AE+AF)^2/4
=> AB^2 ≤ EF^2/4
=> AB ≤ EF/2 (do AB, EF >0)

=> EF.AB/2 ≥ AB^2

=> diện tích EBF ≥ AB^2
lại có diện tích BPQ = PQ.AB/2= [(1/2.AE+ 1/2.AF).AB]/2= EF.AB/4= diện tích EBF/2

=> diện tích BPQ ≥ AB^2/2

dấu "=" <=> AE= AF => A tđ EF

           xét t/g EBF có BA là trung tuyến, BA là đường cao => t/d EBF cân tại B => BA là phân giác
xét t/g CBD có: BO là trung tuyến, BO là phân giác => t/g CBD cân tại B => BO là đường cao => AB vuông góc CD

Vậy t.g BPQ có dt nhỏ nhất <=> AB vuông góc CD

Oke, nếu thấy đúng thì cho mik xin 1 k nhé!