K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2022

20 tháng 8 2022

viết sai phải là sos

25 tháng 4 2020

A = ( x - 2 )2 + 2019 

    ( x-  2 )2 \(\ge0\forall x\)

=> ( x - 2)2 + 2019 \(\ge2019\)

=> A \(\ge2019\)

Dấu " = " xảy ra <=> ( x - 2)2 =0

                                    <=> x = 2 

b) Bạn xem lại đề nha !Nếu đề không sai thì nhắn lại với mình 

c) C = -( 3 -x)100 - 3. ( y + 2 )200 + 2020 

( 3-x )100 \(\ge0\forall x\)

=> - ( 3-x)100 \(\le0\forall x\)

Tương tự : - 3.( y+2)100 \(\le0\forall y\)

=> C \(\le2020\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(3-x\right)^{100}=0\\\left(y+2\right)^{100}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

25 tháng 4 2020

@Shadow@ Đề câu b) đúng rồi đó

\(B=\left(x-3\right)^2+\left(y-2\right)^2-2018\)

ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\inℤ\\\left(y-2\right)^2\ge0\forall y\inℤ\end{cases}}\)

=> \(\left(x-3\right)^2+\left(y-2\right)^2-2018\le2018\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

5 tháng 12 2019

                                                     Bài giải

a) Không tìm được GTLN

Tìm GTNN :

Do \(\left|x-2\right|\ge0\) \(\Rightarrow\text{ }\left|x-2\right|+2019\ge2019\) Dấu " = " xảy ra khi \(\left|x-2\right|=0\)\(\Rightarrow\text{ }x-2=0\text{ }\Rightarrow\text{ }x=2\)

Vậy GTNN của \(\left|x-2\right|+2019\) là 2019

b,  GTLN :

Do \(\left|x+1\right|\ge0\text{ }\Rightarrow\text{ }2018-\left|x+1\right|\le2018\) Dấu " = " xảy ra khi \(\left|x+1\right|=0\text{ }\Rightarrow\text{ }x+1=0\text{ }\Rightarrow\text{ }x=-1\)

\(\Rightarrow\text{ }Max\text{ }2018-\left|x+1\right|=2018\)

GTNN không tìm được

c, Quên cách làm rồi !

28 tháng 2 2020

a) A= |x+2| + 2019

Vì đằng trước |x+2| là dấu "+" nên biểu thức A phải tìm GTNN

Vì |x+2| luôn lớn hơn hoặc bằng 0 (ghi kí hiệu nha), với mọi x

nên |x+2| + 2019 luôn hơn hoặc bằng 2019, với mọi x

Khi dấu "=" xảy ra thì biểu thức A đạt GTNN là 2019 

Khi đó: |x+2|=0

=>         x+2 =0

=>         x=-2

Vậy biểu thức A đạt GTNN là 2019 khi x= -2

b) B= 2018 - |x+1|

Vì đằng trước |x+1| là dấu "-" nên biểu thức B phải tìm GTLN

Vì -|x+1| luôn bé hơn hoặc bằng 0, với mọi x

nên 2018 -|x+1| luôn bé hơn hoặc bằng 0, với mọi x

Khi dấu "=" xảy ra thì biểu thức B đạt GTLN là 2018

Khi đó: |x+1| =0

=>         x+1  =0

=>         x=-1

Vậy biểu thức B đạt GTLN là 2018 khi x =-1

c) C = |x-3| + |y-2| +2020

Vì đằng trước |x-3| và |y-2| là dấu "+' nên biểu thức C phải tìm GTNN 

Vì |x-3| luôn lớn hơn hoặc bằng 0, với mọi x

và |y-2| luôn lớn hơn hoặc bằng 0, với mọi y

=> |x-3| + |y-2| luôn lớn hơn hoặc bằng 0, với mọi x, y

=> |x-3| + |y-2| + 2020 luôn lớn hơn hoặc bằng 2020, với mọi x, y

Khi dấu "=" xảy ra thì biểu thức C đạt GTNN là 2020 

Khi đó: |x-3|=0 và |y-2|=0

=>         x-3=0 và   y-2=0

=>         x=3    và   y=2

Vậy biểu thức Cđạt GTNN là 2020 khi x=3 và y=2

a: \(A=1-\dfrac{2\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}{4\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}\)

=1-2/4=1/2

b: \(B=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)

\(=\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}=5\cdot\dfrac{-6}{9}=-\dfrac{10}{3}\)

c: x-y=0 nên x=y

\(C=x^{2020}-x^{2020}+y\cdot y^{2019}-y^{2019}\cdot y+2019\)

=2019

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

10 tháng 8 2018

b. + Vì \(|6-2x|\ge0\)\(\forall x\)

\(\Rightarrow\)\(|6-2x|-5\ge0-5\)\(\forall x\)

\(\Rightarrow\)B\(\ge\)-5 \(\forall x\)

Vậy GTNN của B= -5 \(\Leftrightarrow\)6-2x=0

                                    \(\Leftrightarrow\)2x=6

                                   \(\Leftrightarrow\)x=3

+ Vì -\(|6-2x|\le0\forall x\)

\(\Rightarrow\)\(|6-2x|-5\le0+5\forall x\)

\(\Rightarrow B\le5\forall x\)

Vậy GTLN của B= 5 \(\Leftrightarrow6-2x=0\)

                                \(\Leftrightarrow2x=1\)

                                \(\Leftrightarrow x=\frac{1}{2}\)

c,+ Vì \(|x+1|\ge0\forall x\)

\(\Rightarrow\)\(3-|x+1|\ge3-0\forall x\)

\(\Rightarrow C\ge3\forall x\)

Vậy GTNN của C=3 \(\Leftrightarrow x+1=0\)

                                 \(\Leftrightarrow x=-1\)

+ Vì \(-|x+1|\le0\forall x\)

\(\Rightarrow3-|x+1|\le3+0\forall x\)

\(\Rightarrow C\le3\forall x\)

Vậy GTLN của \(C=3\Leftrightarrow x+1=0\)

                                     \(\Leftrightarrow x=-1\)

Mình chỉ làm vậy thôi nhé!

10 tháng 8 2018

THANKS  BẠN NHIỀU NHA

a) \(\left(x-2\right)^2+2019\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+2019\ge2019\forall x\)

Dấu '=' xảy ra khi

\(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-2\right)^2+2019\) là 2019 khi x=2

b) \(\left(x-3\right)^2+\left(y-2\right)^2-2018\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\left(y-2\right)^2\ge0\forall y\)

Do đó: \(\left(x-3\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-3\right)^2+\left(y-2\right)^2-2018\ge-2018\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-3\right)^2+\left(y-2\right)^2-2018\) là -2018 khi x=3 và y=2

c) \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\)

Ta có: \(\left(3-x\right)^{100}\ge0\forall x\)

\(\Rightarrow-\left(3-x\right)^{100}\le0\forall x\)

Ta có: \(\left(y+2\right)^{200}\ge0\forall y\)

\(\Rightarrow-3\cdot\left(y+2\right)^{200}\le0\forall y\)

Do đó: \(-\left(3-x\right)^{100}-3\left(y+2\right)^{200}\le0\forall x,y\)

\(\Rightarrow-\left(3-x\right)^{100}-3\left(y+2\right)^{200}+2020\le2020\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(3-x\right)^{100}=0\\\left(y+2\right)^{200}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3-x=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\) là 2020 khi x=3 và y=-2

d) \(-\left|x-1\right|-2\left(2y-1\right)^2+100\)

Ta có: \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow-\left|x-1\right|\le0\forall x\)

Ta có: \(\left(2y-1\right)^2\ge0\forall y\)

\(\Rightarrow-2\left(2y-1\right)^2\le0\forall y\)

Do đó: \(-\left|x-1\right|-2\left(2y-1\right)^2\le0\forall x,y\)

\(\Rightarrow-\left|x-1\right|-2\left(2y-1\right)^2+100\le100\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left|x-1\right|=0\\\left(2y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(-\left|x-1\right|-2\left(2y-1\right)^2+100\) là 100 khi x=1 và \(y=\frac{1}{2}\)

25 tháng 1 2020

1)a Ta có: \(A=\left|x+19\right|+\left|y-5\right|+1890\)

\(\hept{\begin{cases}\left|x+19\right|\ge0\\\left|y-5\right|\ge0\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890}\)

Vậy giá trị A nhỏ nhất = 1890 <=> x=-19; y= 5

2) a.   \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=2019\)

           \(\left(1+3+5+...+99\right)+\left(x+x+x+...+x\right)=2019\)

Rồi bn tính tổng của dãy số cách đều nha. Công thức: (Số cuối+ Số đầu). Số số hạng: 2 

3) Ta có: \(A^2=b\left(a-c\right)-c\left(a-b\right)\)

              \(A^2=ab-bc-ac+bc\)

             \(A^2=\left(-bc+bc\right)+\left(ab-ac\right)\)

            \(A^2=0+a\left(b-c\right)\)

           \(A^2=-20.\left(-5\right)=100\)

      \(\Rightarrow A=10\)

Chúc bạn năm mới vui vẻ nha! Happy new year !

                                                                                                       

a: Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: Ta có: \(-x^2+x+2\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Bài:1 chứng minh các phân số sau tối giản với nthuoojc z1,     3n-2/4n-3   2,     4n+1/6n+1   Bài:2 cho a;b thuộc z chứng minh a,  6a+11b :a+7b:31         b,    5a+2b:179a+7b:17Bài 3 tìm số x,y biết1,  3/x+y/x+5/6      2,   5/x-y/3=1/6Bài 4 a, tìm x nguyên để các biểu thức đạt giá trị nhỏ nhất1,  A=(x+1)^2+2019         2, B+ giá trị thuyệt đối (2x+6)-2001b, Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất1,...
Đọc tiếp

Bài:1 chứng minh các phân số sau tối giản với nthuoojc z

1,     3n-2/4n-3   2,     4n+1/6n+1   

Bài:2 cho a;b thuộc z chứng minh a,  6a+11b :a+7b:31         b,    5a+2b:179a+7b:17

Bài 3 tìm số x,y biết

1,  3/x+y/x+5/6      2,   5/x-y/3=1/6

Bài 4 a, tìm x nguyên để các biểu thức đạt giá trị nhỏ nhất

1,  A=(x+1)^2+2019         2, B+ giá trị thuyệt đối (2x+6)-2001

b, Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất

1, A=2020-(x+3)^2020     2, B=2019-gíá trị tuyệt đối (2018-x)       3, C=2/(x-3)^2+5       4, D=3/ gía trị thuyệt đối  (x+2)+1

c, tìm giá trị nhỏ nhất của S=giá trị tuyệt đối (x+2)+giá trị tuyệt đối(2y-10)+2019

 

Các Bạn giúp mình mấy bài này nhé mình cảm ơn nhiều làm hết cho mình thì tốt quá mình cảm ơn^^

 

0