cho tam giác mnp có mn=mp i là trung điểm của np,trên tia đối của tia im lấy k sao cho ik = im, tam giác mnp phải có điều kiện nào đê ikp=30 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác `MNPK` có :
\(\left\{{}\begin{matrix}IM=IK\\IN=IP\end{matrix}\right.\)
`=>` tứ giác `MNPK` là hình bình hành ( tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)
`=> MN = PK ; MN` // `PK`
Xét tứ giác MNKP có
I là trung điểm của MK và NP
=>MNKP là hình bình hành
=>MN//PK và MN=PK
a: Xét ΔMNI và ΔMPI có
MN=MP
NI=PI
MI chung
Do đó: ΔMNI=ΔMPI
Ta có: ΔMNP cân tại M
mà MI là đường trung tuyến
nên MI là đường cao
b: Xét tứ giác MNQP có
I là trung điểm của MQ
I là trung điểm của NP
Do đó: MNQP là hình bình hành
Suy ra: MN//PQ
c: Xét tứ giác MEQF có
ME//QF
ME=QF
Do đó: MEQF là hình bình hành
Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của MQ
nên I là trung điểm của FE
hay E,I,F thẳng hàng
a: Xét ΔMIP và ΔKIN có
IM=IK
\(\widehat{MIP}=\widehat{KIN}\)
IP=IN
Do đó: ΔMIP=ΔKIN
c: Xét ΔMEK có
H là trung điểm của ME
I là trung điểm của MK
Do đó: HI là đường trung bình
=>HI//EK và HI=EK/2
Xét ΔMPE có
PH là đường cao
PH là đường trung tuyến
Do đó: ΔMPE cân tại P
Suy ra: PM=PE(1)
Xét tứ giác MNKP có
I là trung điểm của MK
I là trung điểm của NP
Do đó: MNKP là hình bình hành
Suy ra: NK=MP(2)
Từ (1) và (2) suy ra NK=PE
Bạn tự vẽ hình
`a)`Xét tam giác MNP cân có:MI là trung tuyến
`=>` MI là đường cao
`=>MI bot NP`
`b)` Xét tam giác vuông MIQ và tam giác vuông MIK có:
`MI` chung
`hat{NMI}=hat{PMI}`
`=>DeltaMIQ=DeltaMIK(ch-gn)`
`=>IQ=IK(1)`
`DeltaMIQ=DeltaMIK(ch-gn)`
`=>MQ=MK(2)`
`(1)(2)=>IM` là trung trực QK