Rút gọn:
A = \(\frac{1+3^4+3^8+3^{12}}{1+3^2+3^4+3^6+..+3^{14}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
• A=1+34+38+312
=>34.A=34+38+312+316
<=>81.A-A=316-1
<=>A=(316-1)/80=538084
•B=1+32+34+36+38+310+312+314
=>32.B=32+34+36+38+310+312+314+316
<=>8.B=316-1
<=>B=(316-1)/8=53808400
Vậy Q=A/B=538084/53808400=1/100=0.01
a: \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{24-2\cdot2\sqrt{6}\cdot3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
b: \(\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|\)
\(=3+\sqrt{5}+3-\sqrt{5}=6\)
c: \(\dfrac{3}{2\sqrt{3}+3}+\dfrac{3}{2\sqrt{3}-3}\)
\(=\dfrac{3\left(2\sqrt{3}-3\right)+3\left(2\sqrt{3}+3\right)}{12-9}\)
\(=2\sqrt{3}-3+2\sqrt{3}+3=4\sqrt{3}\)
d: \(\sqrt{\left(\sqrt{3}+4\right)\cdot\sqrt{19-8\sqrt{3}}+3}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\cdot\sqrt{\left(4-\sqrt{3}\right)^2}+3}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\cdot\left(4-\sqrt{3}\right)+3}\)
\(=\sqrt{16-3+3}=\sqrt{16}=4\)
e: \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)
\(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3\left(3-\sqrt{6}\right)}{3}\)
\(=\dfrac{\sqrt{6}}{2}+3-\sqrt{6}=3-\dfrac{\sqrt{6}}{2}\)
\(\frac{4^{10}+8^4}{4^5+8^6}=\frac{\left(2^2\right)^{10}+\left(2^3\right)^4}{\left(2^2\right)^5+\left(2^3\right)^6}=\frac{2^{2.10}+2^{3.4}}{2^{2.5}+2^{3.6}}=\)
\(=\frac{2^{20}+2^{12}}{2^{10}+2^{18}}\)
Áp dụng câu trên vào
\(A=\frac{B}{C}\Rightarrow B=\frac{3^{16}-1}{3^4-1};C=\frac{3^{16}-1}{3^2-1}\)
\(A=\frac{B}{C}=\frac{3^2-1}{3^4-1}=\frac{3^2-1}{\left(3^2-1\right)\left(3^2+1\right)}=\frac{1}{10}\)