tìm số có hai chữ số biết rằng số đố gấp 4 lần tổng các chữ số của nó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab
Mà số đó gấp 7 lần tổng các chữ số của nó
\(\Rightarrow\)ab=7.(a+b)
Ta có:ab=7.(a+b)
10a+b=7a+7b
10a-7a=7b-b
3a=6b(1)
Từ 1 suy ra được a=6;b=3
Vậy số cần tìm là 63
Câu2:
Gọi số cần tìm là ab
Mà số đó gấp 8 lần tổng các chữ số của nó
\(\Rightarrow\)ab=8x(a+b)
Ta có:ab=8x(a+b)
10a+b=8a+8b
10a-8a=8b-b
2a=7b(1)
Từ(1) suy ra a=7;b=2
Vậy số cần tìm là 72
a ) Gọi số đó là ab .Theo đề bài ra ta có : b ) Gọi sô đó là ab .Theo đề bài ra ta có :
ab = 6 x ( a + b ) ab = 7 x ( a + b )
10 x a + b = 6 x a + 6 x b a x 10 + b = 7 x a + 7 x b
10 x a - 6 x a = 6 x b - b 10 x a - 7 x a = 7 x b - b
4 x a = 5 x b 3 x a = 6 x b
=> số đó là 45 => ab = 36
c ) ab = 8 x ( a + b )
a x 10 + b = 8 x a + 8 x b
a x 10 - 8 x a = 8x b - b
2 x a = 7 x b
=> ab = 27
d)
ab = 9 x ( a + b )
a x 10 + b = 9 x a + 9 x b
a x 10 - 9 x a = 9 x b - b
a x 1 = 9 x 8
=>n số đó là 18
Gọi số tự nhiên đó là ab
Vì số tự nhiên ab gấp 9 lần tổng các chữ số của nó
⇒⇒ab = 9x(a+b)
⇔⇔10a =9a+9b
⇔⇔a = 8b
Xét 2 trường hợp:
Nếu b = 1 và a = 8 (có thể lấy được)
Nếu b = 2 và a = 16 (không thể lấy được vì ab chỉ có 2 chữ số)
Vậy khi xét qua 2 trường hợp ab = 81
a)gọi số đó là :ab
ab = 6 x (a+b)
10a + b= 6a + 6b
4 x a= 5 x b
vậy ab = 54
Gọi số tự nhiên đó là ab
Vì số tự nhiên ab gấp 9 lần tổng các chữ số của nó
⇒⇒ab = 9x(a+b)
⇔⇔10a =9a+9b
⇔⇔a = 8b
Xét 2 trường hợp:
Nếu b = 1 và a = 8 (có thể lấy được)
Nếu b = 2 và a = 16 (không thể lấy được vì ab chỉ có 2 chữ số)
Vậy khi xét qua 2 trường hợp ab = 81
Gọi số đó là: \(\overline{ab}\)
Theo đề bài số đó gấp 8 lần tổng các chữ số nó, vậy:
\(\overline{ab}=8\times\left(a+b\right)\\ \Rightarrow a\times10+b=8\times a+8\times b\\ \Rightarrow a\times10-8\times a=8\times b-b\\ \Rightarrow2\times a=7\times b\\ \Rightarrow\overline{ab}=27\)
Vậy số đó bằng 27
Số đó là 36 , ai thích Conan và Kaito Kid thì tick mk nha , rùi nhớ kb lun đó !!! Happy new year !!!
tự làm tự **** à các số nè 12;24;36;48