Cho đường tròn \(\left(\omega\right)\), B là 1 điểm trên \(\left(\omega\right)\). Trên tiếp tuyến tại B của \(\left(\omega\right)\) lấy điểm A. Lấy điểm C sao cho đoạn AC cắt \(\left(\omega\right)\) tại 2 điểm phân biệt. Đường tròn \(\left(\omega'\right)\) tiếp xúc AC tại C, tiếp xúc \(\left(\omega\right)\) tại D, sao cho D khác phía B đối với AC. CMR tâm đường tròn ngoại tiếp tam giác BCD nằm trên đường tròn ngoại tiếp tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A^2=A_1^2+A^2_2+2A_1A_1\cos\left(\widehat{A_1A_1}\right)\Rightarrow\left(\widehat{A_1A_2}\right)=\dfrac{\pi}{2}\)
Chỗ này đề bài ko cho rõ thì chia làm 2 trường hợp, x1 nhanh pha hơn hoặc x2 nhanh pha hơn, rồi tính được phi 2
Bấm máy là xong luôn pha ban đầu của dao động tổng hợp, biết bấm ko để tui chỉ luôn?
Thôi chỉ luôn đi, mất công hỏi nhiều mệt người
SHIFT Mode , cái nút tròn ở giữa ấy, ấn phía bên dưới, rồi nhấn 3, rồi nhấn tiếp 2
Nhấn tiếp Mode, rồi nhấn số 2
Nhấn SHIFT Mode lần nữa, rồi nhấn số 4 để nó chuyển về radian
Nhập theo mẫu sau: A1 SHIFT (-) phi 1 +A2 SHIFT (-) phi 2 , rồi nhất "=",nó sẽ ra kết ủa y hệt cái phương trình đã cho, từ đó tìm được pha ban đầu của phương trình tổng hợp. Biết phi 2, biết phi, dễ dàng tính được biểu thức
* Ban đầu: \(\varphi_{u/i}=-\dfrac{\pi}{4}-(-\dfrac{\pi}{2})=\dfrac{\pi}{4}(rad)\)
\(\Rightarrow \tan\varphi = \dfrac{-Z_C}{R}=-1\Rightarrow Z_C= R\)
Tổng trở của mạch: \(Z=\sqrt{R^2+Z_C^2}=R\sqrt 2\)
* Khi mắc nối tiếp vào mạch tụ thứ 2 có điện dung bằng điện dung đã cho thì: \(Z_C'=2Z_C=2R\)
Tổng trở: \(Z'=\sqrt{R^2+Z_C'^2}=\sqrt{R^2+(2R)^2}=R\sqrt 5\)
\(\Rightarrow \dfrac{I'}{I}=\dfrac{Z}{Z'}=\dfrac{\sqrt 2}{\sqrt 5}\)
\(\Rightarrow I'=0,63I\)
\(\Rightarrow I_0'=0,63I_0\)
Độ lệch pha giữa u và i: \(\tan\varphi = \dfrac{-Z_C'}{R}=2\)
\(\Rightarrow \varphi{_{u/i}} = -0,352\pi(rad)\Rightarrow \varphi{_{i/u}} = 0,352\pi(rad)\)
\(\Rightarrow \varphi i'=\varphi _u+0,352\pi=-0,5\pi+0,352\pi=-0,147\pi\)(rad)
Vậy biểu thức của dòng điện là:
\(i=0,63I_0\cos(\omega t -0,147\pi) (A)\)
Chọn A.
\(\varphi=\varphi_u-\varphi_i=0-\left(-\frac{\pi}{4}\right)=\frac{\pi}{4}\)
\(\tan\varphi=\frac{Z_L-Z_C}{R}=1\Rightarrow Z_L-Z_C=R\)
\(\Rightarrow Z=\sqrt{R^2+\left(Z_L-Z_C\right)^2}=R\sqrt{2}\)
Mà \(Z=\frac{U}{I}=\frac{200}{2}=100\Rightarrow R=\frac{100}{\sqrt{2}}=50\sqrt{2}\)
Ta có: \(x\left( t \right) = {x_1}\left( t \right) + {x_2}\left( t \right) = 2\left[ {\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) + \cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)} \right]\)
\(2\left[ {\cos \left( {\frac{{\frac{\pi }{3}t + \frac{\pi }{6} + \frac{\pi }{3}t - \frac{\pi }{3}}}{2}} \right).\cos \left( {\frac{{\frac{\pi }{3}t + \frac{\pi }{6} - \frac{\pi }{3}t + \frac{\pi }{3}}}{2}} \right)} \right] = 2\left[2. {\cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right).\cos \frac{\pi }{4}} \right] = 2\sqrt 2 \cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right)\)
Vậy biên độ là \(2\sqrt 2 \), pha ban đầu \( - \frac{\pi }{{12}}\)
Ta có:
\(\sqrt{2016a+\frac{\left(b-c\right)^2}{2}}=\sqrt{2016a+\frac{b^2-2bc+c^2}{2}}=\sqrt{2016a+\frac{b^2+2bc+c^2-4bc}{2}}\)
\(=\sqrt{2016a+\frac{\left(b+c\right)^2-4bc}{2}}=\sqrt{2016a+\frac{\left(b+c\right)^2}{2}-2bc}\)
\(\le\sqrt{2016a+\frac{\left(b+c\right)^2}{2}}\left(b,c\ge0\right)=\sqrt{2016a+\frac{\left(a+b+c-a\right)^2}{2}}\)
\(=\sqrt{2016a+\frac{\left(1008-a\right)^2}{2}}=\sqrt{\frac{\left(1008+a\right)^2}{2}}=\frac{1008+a}{\sqrt{2}}\left(a\ge0\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\sqrt{2016b+\frac{\left(c-a\right)^2}{2}}\le\frac{1008+b}{\sqrt{2}};\sqrt{2016c+\frac{\left(a-b\right)^2}{2}}\le\frac{1008+c}{\sqrt{2}}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\frac{3\cdot1008+\left(a+b+c\right)}{\sqrt{2}}=\frac{4\cdot1008}{\sqrt{2}}=2016\sqrt{2}\)