CMR : B = 1/2^2 + 1/3^2 + 1/4^2 + .....+ 1/2016^2 < 3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}<1\)
\(\Rightarrow2M=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}<1\)
\(2M-M=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\right)<1\)
\(\Rightarrow M=1-\frac{1}{2016^2}\)<1
=>(DPCM)
CÂU b và c làm tương tự
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\)
\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2016.2016}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}\)
\(=\frac{2015}{2016}< 1\)
\(\Rightarrow A< 1\)
\(\text{Vậy }A< 1\left(\text{đpcm}\right)\)
Bài giải
Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\) ; \(\frac{1}{3^2}< \frac{1}{2\cdot3}\) ; \(\frac{1}{4^2}< \frac{1}{3\cdot4}\) ; ... ; \(\frac{1}{2016^2}< \frac{1}{2015\cdot2016}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2015\cdot2016}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}=1-\frac{1}{2016}=\frac{2015}{2016}< 1\)
\(\Rightarrow\text{ }A< 1\)
Cau a) 1/1.2 +1/2.3 +1/3.4+...+1/99.100= 1/1-1/2+1/2-1/3+...+1/99-1/100
=1/1-1/100=99/100
99/100<1 thì 1/1.2 +1/2.3+1/3.4+...+1/99.100<1
Câu b): Ta có: 1/2^2<1/1.2
1/3^2<1/2.3
...............(so sánh như vậy với các số khác)
1/2016^2<1/2015.2016
Áp dụng của câu a ta thêm vào sau về thành: 1/1.2+1/2.3+1/3.4+...+1/2015.2016
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2015-1/2016
=1/1-1/2016
=2015/2016<1
Ma :1/2^2+1/3^2+1/4^2+...+1/2016^2<1/1.1+1/2.3+1/3.4+...+1/2015.2016
Nen:1/1^2+1/3^2+1/4^2+...+1/2016^2<1