cho tam giác ABC vuông tại A, đường trung tuyến AM.Gọi D là trung điểm của AB, E là điểm đối xứng với M qua D
a) CM: tứ giác AEBM là hình thoi
b) Gọi I là trung điểm AM. CM: 3 điểm E; I; C thẳng hàng
c) Tam giác ABC có thêm điều kiện gì thì AEBM là hình vuông
A) Xét tam giác MDA và tam giác EDB có :
MD=DE( GT)
DA=DB( GT)
góc EDB=góc MDA ( góc đối đỉnh)
vậy tam giác MDA = tam giác EDB( C-G-C)
suy ra : DE=MA( hai canh tương ứng)
chứng minh tương tự ta lại có : tam giác MDB= tam giác EDA
suy ra : MB=AE( hai canh tương ứng)
mà ta lại có AM là đường trung tuyến ứng với cạnh huyền vậy AM=1/2BC=MB
vậy : MA=MB=AE=BE
suy ra : tứ giác AEBM là hình thoy
B) Xét tứ giác CMEA có :
MB song song với AE và bằng MB =AE ( theo phần a)
mà ta lại có : MC = MB
vậy AE song song với MC
AE=MC( chứng minh trên)
vậy tứ giác CMEA là HBH
Mà I lại là trung điểm của đường chéo AM
vậy I cũng là trung điểm của đường chéo CE
suy ra : C,i.E thẳng hàng
C) tam giác ABC phải là tam giác vuông cân thì tứ giác AEBM mới là hình vuông
bở lẽ khi tam tam giác ABC vuuong cân thì ta sẽ có góc CBA = 45 độ
mà BA lại là đường phân giác của góc MBE ( theo phần a tứ giác AEMB là hình thoi)
nên góc MBE =45*2=90độ
mà phần a ta lại có tứ giác AMBE là hình thoi
vậy tứ giác AMBE là hình vuông
mình làm xong rồi nhớ mình nhé mình cảm ơn ^_^
câu a) bn ấy lm hơi dài nên mk có cách khác
c/m EBMA là hbh (2 đường chéo cắt tại trung điểm mỗi đường)
mà có AB vuông góc EM (t/c đối xứng)
vậy AEBM là hình thoi