K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2017

\(x^2+2xy+4x+4y+3y^2+3=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(4x+4y\right)+4+2y^2-1=0\)

\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4=1-2y^2\)

\(\Leftrightarrow\left(x+y+2\right)^2=1-2y^2\)

Do  \(VP=1-2y^2\le1\forall y\) nên \(VT=\left(x+y+2\right)^2\le1\)

\(\Leftrightarrow-1\le x+y+2\le1\)

\(\Leftrightarrow-1+2015\le x+y+2+2015\le1+2015\)

\(\Leftrightarrow2014\le x+y+2017\le2016\)

Hay \(2014\le B\le2016\)

24 tháng 12 2017

Bạn Đinh Đức Hùng cho tớ hỏi được không ạ ?

Cái chỗ do Vp = 1- 2y^2 nên ...

Bên trên là dương 1 sao ở đưới lại là -1 ạ? Tớ chưa hiểu chỗ này, mong cậu giảng cho tớ :< pls !

8 tháng 12 2016
  • \(B=\left(4x^2+3y\right)\left(4y^2+3x\right)+25xy=16x^2y^2+12\left(x^3+y^3\right)+34xy\)

\(=16x^2y^2+12\left(x+y\right)\left(x^2-xy+y^2\right)+34xy\)

\(=16x^2y^2+12\left[\left(x+y\right)^2-2xy\right]+22xy\)

\(=16x^2y^2-2xy+12\)

Đặt \(t=xy\) thì \(B=16t^2-2t+12=16\left(t-\frac{1}{16}\right)^2+\frac{191}{16}\ge\frac{191}{16}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y=1\\xy=\frac{1}{16}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2+\sqrt{3}}{4}\\y=\frac{2-\sqrt{3}}{4}\end{cases}}\) hoặc \(\hept{\begin{cases}x=\frac{2-\sqrt{3}}{4}\\y=\frac{2+\sqrt{3}}{4}\end{cases}}\)

Vậy min B \(=\frac{191}{16}\) khi \(\left(x;y\right)=\left(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}\right);\left(\frac{2-\sqrt{3}}{4};\frac{2+\sqrt{3}}{4}\right)\)

  • Như trên ta có : \(B=16\left(xy-\frac{1}{16}\right)^2+\frac{191}{16}\)

Mặt khác, áp dụng BĐT Cauchy , ta có : \(1=x+y\ge2\sqrt{xy}\Rightarrow xy\le\frac{1}{4}\)

Suy ra : \(B\le16\left(\frac{1}{4}-\frac{1}{16}\right)^2+\frac{191}{16}=\frac{25}{2}\)

Đẳng thức xảy ra khi x = y = 1/2

Vậy max B = 25/2 khi (x;y) = (1/2;1/2)

3 tháng 7 2019

Đáp án đúng : A

31 tháng 7 2020

a. \(-x^2+4x+y^2-12y+47\)

\(=-\left(x^2-4x-y^2+17y-47\right)\)

\(=-\left[x^2-4x+4-\left(y^2-12y+36\right)-15\right]\)

\(=-\left[\left(x-2\right)^2-\left(y-6\right)^2-15\right]\)

Vì  \(\left(x-2\right)^2-\left(y-6\right)^2-15\ge-15\forall x\)

\(\Rightarrow-\left[\left(x-2\right)^2-\left(y-6\right)^2-15\right]\le15\)

Vậy GTLN của bt trên là 15   \(\Leftrightarrow x=2;y=6\)

31 tháng 7 2020

b.  \(-x^2-x-y^2-3y+13\)

\(=\frac{1}{4}\left(-4x^2-4x-4y^2-12y+52\right)\)

\(=\frac{1}{4}\left[-\left(2x+1\right)^2-\left(2y+3\right)^2+42\right]\)

Vì \(\frac{1}{4}\left[-\left(2x+1\right)^2-\left(2y+3\right)^2+42\right]\le42\forall x;y\)

\(\Rightarrow-\left(2x+1\right)^2-\left(2y+3\right)^2+42\le\frac{21}{2}\forall x;y\)

Vậy GTLN của bt trên là 21/2  \(\Leftrightarrow x=-\frac{1}{2};y=-\frac{3}{2}\)

NV
28 tháng 3 2023

\(M=6x^2+4y^2+6xy+\left(xy+\dfrac{4x}{y}\right)+\left(3xy+\dfrac{3y}{x}\right)+2022\)

\(M\ge3x^2+y^2+3\left(x+y\right)^2+2\sqrt{\dfrac{4x^2y}{y}}+2\sqrt{\dfrac{9xy^2}{x}}+2022\)

\(M\ge3\left(x^2+1\right)+\left(y^2+4\right)+3\left(x+y\right)^2+4x+6y+2015\)

\(M\ge6x+4y+3\left(x+y\right)^2+4x+6y+2015\)

\(M\ge3\left(x+y\right)^2+10\left(x+y\right)+2015\ge3.3^2+10.3+2015=2072\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)