K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2022

A = \(\sqrt{36}\).( 3\(\sqrt{4}\) - \(\sqrt{\dfrac{1}{9}}\)) + 2

A = 6( 3.2- \(\dfrac{1}{3}\)) + 2 

A = 6.3.2 - 2 + 2

A = 36

B = \(\sqrt{\dfrac{1}{9}+\dfrac{1}{16}}\)

B = \(\sqrt{\dfrac{25}{9.16}}\)

B = 5/12

C = ( \(\sqrt{\dfrac{1}{9}}\)\(\sqrt{\dfrac{25}{36}}\)\(\sqrt{\dfrac{49}{81}}\)): \(\sqrt{\dfrac{441}{324}}\)

C = ( 1/3+ 5/6 - 7/9) : 7/6

C = ( 6/18 +15/18 -14/18): 7/6

C = 7/18 : 7/6

C = 7/18 .6/7

C = 1/3

D =\(\sqrt{(\dfrac{-2}{5})^2}\)\(\sqrt{1,44}\) - \(\sqrt{256}\)

D = 2/5 + 1,2 - 16

D = 0,4 + 1,2 - 16

D = -14,4 

 

24 tháng 8 2021

a)\(2\sqrt{\dfrac{16}{3}}-3\sqrt{\dfrac{1}{27}}-6\sqrt{\dfrac{4}{75}}\)

\(=2.\sqrt{\dfrac{4^2}{3}}-3.\sqrt{\dfrac{1}{3.3^2}}-6\sqrt{\dfrac{2^2}{3.5^2}}\)

\(=2.\dfrac{4}{\sqrt{3}}-3.\dfrac{1}{3\sqrt{3}}-6.\dfrac{2}{5\sqrt{3}}=\dfrac{8}{\sqrt{3}}-\dfrac{1}{\sqrt{3}}-\dfrac{12}{5\sqrt{3}}\)\(=\dfrac{23}{5\sqrt{3}}=\dfrac{23\sqrt{3}}{15}\)

b)\(\left(6\sqrt{\dfrac{8}{9}}-5\sqrt{\dfrac{32}{25}}+14\sqrt{\dfrac{18}{49}}\right).\sqrt{\dfrac{1}{2}}\)

\(=6\sqrt{\dfrac{8}{9}.\dfrac{1}{2}}-5\sqrt{\dfrac{32}{25}.\dfrac{1}{2}}+14\sqrt{\dfrac{18}{49}.\dfrac{1}{2}}\)

\(=6\sqrt{\dfrac{4}{9}}-5\sqrt{\dfrac{16}{25}}+14\sqrt{\dfrac{9}{49}}\)\(=6.\dfrac{2}{3}-5.\dfrac{4}{5}+14.\dfrac{3}{7}=6\)

c)\(\sqrt{\left(\sqrt{2}-2\right)^2}-\sqrt{6+4\sqrt{2}}=\left|\sqrt{2}-2\right|-\sqrt{4+2.2\sqrt{2}+2}=2-\sqrt{2}-\sqrt{\left(2+\sqrt{2}\right)^2}\)

\(=2-\sqrt{2}-\left(2+\sqrt{2}\right)=-2\sqrt{2}\)

25 tháng 10 2022

a: \(=2\cdot\dfrac{5}{4}-3\cdot\dfrac{7}{6}+4\cdot\dfrac{9}{8}=\dfrac{5}{2}-\dfrac{7}{2}+\dfrac{9}{2}=\dfrac{7}{2}\)

b: \(=18-16\cdot\dfrac{1}{2}+\dfrac{1}{16}\cdot\dfrac{3}{4}\)

=10+3/64

=643/64

c: \(=\dfrac{2}{3}\cdot\dfrac{9}{4}-\dfrac{3}{4}\cdot\dfrac{8}{3}+\dfrac{7}{5}\cdot\dfrac{5}{14}=\dfrac{3}{2}-2+\dfrac{1}{2}=2-2=0\)

28 tháng 10 2023

1:

a: \(\sqrt{36}-\sqrt{100}=6-10=-4\)

b: Để \(\sqrt{\dfrac{2}{2x-1}}\) có nghĩa thì \(\dfrac{2}{2x-1}>=0\)

=>2x-1>0

=>x>1/2

2:

a: \(A=\dfrac{\left(15\sqrt{180}-5\sqrt{200}-3\sqrt{450}\right)}{\sqrt{10}}\)

\(=15\sqrt{\dfrac{180}{10}}-5\sqrt{\dfrac{200}{10}}-3\sqrt{\dfrac{450}{10}}\)

\(=15\sqrt{18}-5\sqrt{20}-3\sqrt{45}\)

\(=45\sqrt{2}-10\sqrt{5}-9\sqrt{5}\)

\(=45\sqrt{2}-19\sqrt{5}\)

b: \(B=\sqrt{32}-\sqrt{50}-16\sqrt{\dfrac{1}{8}}\)

\(=4\sqrt{2}-5\sqrt{2}-\dfrac{16}{\sqrt{8}}\)

\(=-\sqrt{2}-2\sqrt{8}=-\sqrt{2}-4\sqrt{2}=-5\sqrt{2}\)

8 tháng 7 2023

\(a,\dfrac{3}{5}-\dfrac{1}{2}\sqrt{1\dfrac{11}{25}}=\dfrac{3}{5}-\dfrac{1}{2}\sqrt{\dfrac{36}{25}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{\sqrt{6^2}}{\sqrt{5^2}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{6}{5}=\dfrac{3}{5}-\dfrac{6}{10}=\dfrac{3}{5}-\dfrac{3}{5}=0\)

\(b,\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)=5^2-\left(2\sqrt{6}\right)^2=25-2^2.\sqrt{6^2}=25-4.6=25-24=1\)

\(c,\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\\ =\left|2-\sqrt{3}\right|+\sqrt{\sqrt{3^2}-2\sqrt{3}+1}\\ =2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =2-\sqrt{3}+\left|\sqrt{3}-1\right|\\ =2-\sqrt{3}+\sqrt{3}-1\\ =1\)

\(d,\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\left(dk:x,y>0\right)\\ =\dfrac{\left(\sqrt{x^2}.\sqrt{y}+\sqrt{y^2}.\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\sqrt{x^2}-\sqrt{y^2}\\ =\left|x\right|-\left|y\right|\\ =x-y\)

a) Ta có: \(A=\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)\)

\(=\sqrt{3}+2+\sqrt{2}+1-\sqrt{2}-\sqrt{3}\)

=3

b) Ta có: \(B=\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)

\(=\left[\sqrt{3}+1-3\left(2+\sqrt{3}\right)+\dfrac{15\left(3+\sqrt{3}\right)}{6}\right]\cdot\dfrac{1}{5+\sqrt{3}}\)

\(=\left(\sqrt{3}+1-6-3\sqrt{3}+\dfrac{5}{2}\left(3+\sqrt{3}\right)\right)\cdot\dfrac{1}{5+\sqrt{3}}\)

\(=\left(-5-2\sqrt{3}+\dfrac{15}{2}+\dfrac{5}{2}\sqrt{3}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)

\(=\left(\dfrac{5}{2}+\dfrac{\sqrt{3}}{2}\right)\cdot\dfrac{1}{5+\sqrt{3}}=\dfrac{1}{2}\)

 

8 tháng 7 2021

a. \(\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=x-3\sqrt{x} +2\sqrt{x}-6=x-\sqrt{x}-6\)

b. \(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)=x-y\)

c. \(\left(\sqrt{\dfrac{25}{3}}-\sqrt{\dfrac{49}{3}}+\sqrt{3}\right).\sqrt{3}\)

\(=\left(\dfrac{5}{\sqrt{3}}-\dfrac{7}{\sqrt{3}}+\sqrt{3}\right).\sqrt{3}=\dfrac{5}{3}-\dfrac{7}{3}+9=\dfrac{25}{3}\)

d. \(\left(1+\sqrt{3}-\sqrt{5}\right)\left(1+\sqrt{3}+\sqrt{5}\right)\)

\(=\left(1+\sqrt{3}\right)^2-5=1+2\sqrt{3}+3-5=2\sqrt{3}-1\)

8 tháng 7 2021

em cảm mơn nhiều ạ yeu

21 tháng 9 2017

a)\(\sqrt{1}\)+\(\sqrt{9}\)+\(\sqrt{25}\)+\(\sqrt{49}\)+\(\sqrt{81}\)

=1+3+5+7+9

=25

b)=\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{4}\)

=\(\dfrac{6}{12}\)+\(\dfrac{4}{12}\)+\(\dfrac{2}{12}\)+\(\dfrac{3}{12}\)

=\(\dfrac{15}{12}\)

c) =0,2+0.3+0,4

= 0.9

d) =9-8+7

=8

j) =1,2-1,3+1.4

= (-0,1)+1,4

=1,4

g) \(\dfrac{2}{5}\)+\(\dfrac{5}{2}\)+\(\dfrac{9}{10}\)+\(\dfrac{3}{4}\)

= (\(\dfrac{4}{10}\)+\(\dfrac{15}{10}\)+\(\dfrac{9}{10}\))+\(\dfrac{3}{4}\)

= \(\dfrac{14}{5}\)+\(\dfrac{3}{4}\)

=\(\dfrac{56}{20}\)+\(\dfrac{15}{20}\)

= \(\dfrac{71}{20}\)

Nhớ tick cho mk nha~

16 tháng 9 2023

a)

\(\left(\dfrac{3+2\sqrt{3}}{\sqrt{3}+2}-\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\right)\left(\sqrt{3}+\sqrt{2}\right)\\ =\left(\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\left(\sqrt{3}+2\right)}-\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\left(\sqrt{2}+1\right)}\right)\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\\ =3-2\\ =1\)

b)

\(\left(2+\dfrac{11-\sqrt{11}}{1-\sqrt{11}}\right)\left(2+\dfrac{\sqrt{11}+11}{\sqrt{11}+1}\right)\\ =\left(2+\dfrac{\sqrt{11}\left(\sqrt{11}-1\right)}{-\left(\sqrt{11}-1\right)}\right)\left(2+\dfrac{\sqrt{11}\left(1+\sqrt{11}\right)}{\sqrt{11}+1}\right)\\ =\left(2-\sqrt{11}\right)\left(2+\sqrt{11}\right)\\ =4-11\\ =-7\)

a: \(=\left(\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{2+\sqrt{3}}-\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\right)\left(\sqrt{3}+\sqrt{2}\right)\)

=(căn 3-căn 2)(căn 3+căn 2)

=3-2=1

b: \(=\left(2-\dfrac{\sqrt{11}\left(\sqrt{11}-1\right)}{\sqrt{11}-1}\right)\left(2+\dfrac{\sqrt{11}\left(\sqrt{11}+1\right)}{\sqrt{11}+1}\right)\)

=(2-căn 11)(2+căn 11)

=4-11

=-7

21 tháng 9 2023

\(a,\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(1+\sqrt{5}\right)^2}\)

\(=\left|2-\sqrt{5}\right|-\left|1+\sqrt{5}\right|\)

\(=\sqrt{5}-2-\left(1+\sqrt{5}\right)\)

\(=\sqrt{5}-2-1-\sqrt{5}\)

\(=-3\)

\(b,\dfrac{3-5\sqrt{3}}{\sqrt{3}-5}+6\sqrt{\dfrac{4}{3}}\)

\(=\dfrac{\sqrt{3}\left(\sqrt{3}-5\right)}{\sqrt{3}-5}+6\cdot\dfrac{\sqrt{4}}{\sqrt{3}}\)

\(=\sqrt{3}+\dfrac{12}{\sqrt{3}}\)

\(=\sqrt{3}+\dfrac{12\sqrt{3}}{3}\)

\(=\sqrt{3}+4\sqrt{3}\)

\(=5\sqrt{3}\)

#\(Toru\)

21 tháng 9 2023

\(\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(1+\sqrt{5}\right)^2}\\ =\left|2-\sqrt{5}\right|-\left|1+\sqrt{5}\right|\\ =\sqrt{5}-2-1-\sqrt{5}\\ =-2-1\\ =-3\)

\(\dfrac{3-5\sqrt{3}}{\sqrt{3}-5}+6\sqrt{\dfrac{4}{3}}\\ =\dfrac{\sqrt{3}\left(\sqrt{3}-5\right)}{\sqrt{3}-5}+4\sqrt{3}\\ =\sqrt{3}+4\sqrt{3}\\ =5\sqrt{3}\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Lời giải:

\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{16}-2}-\frac{12}{3-\sqrt{16}}\right).(\sqrt{6}+11)=\left(\frac{15(\sqrt{6}-1)}{(\sqrt{6}+1)(\sqrt{6}-1)}+\frac{4}{4-2}-\frac{12}{3-4}\right)(\sqrt{6}+11)\)

\(=\left(\frac{15(\sqrt{6}-1)}{6-1}+2+12\right)(\sqrt{6}+11)=(3\sqrt{6}-3+14)(\sqrt{6}+11)\)

\(=(3\sqrt{6}+11)(\sqrt{6}+11)\)