K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

\(3\left(a+b\right)=2\left(b+c\right)=7\left(c+a\right)\)

\(\Rightarrow\dfrac{3\left(a+b\right)}{42}=\dfrac{2\left(b+c\right)}{42}=\dfrac{7\left(c+a\right)}{42}\)

\(\Rightarrow\dfrac{a+b}{14}=\dfrac{b+c}{21}=\dfrac{c+a}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b}{14}=\dfrac{b+c}{21}=\dfrac{c+a}{6}=\dfrac{b+c-a-b}{21-14}=\dfrac{c-a}{7}\left(1\right)\)

\(\dfrac{a+b}{14}=\dfrac{b+c}{21}=\dfrac{c+a}{6}=\dfrac{a+b-c-a}{14-6}=\dfrac{b-c}{8}\left(2\right)\)

Từ (1) và (2) ta có đpcm

27 tháng 10 2021

TK: Cho các số thực dương a, b, c thỏa mãn a + b+ c = 3. Chứng minh rằng: \(\sqrt{2a^2+\frac{7}{b^2}}+\sqrt{2b^2+\frac{7}{... - Hoc24