K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

Khi bỏ dấu ngoặc thì bt có dạng:

\(a_x\cdot a^x+a_{x-1}\cdot a^{x-1}+...+a_1\cdot x\)

Thay x=0 thì bt có dạng:

...@@@@<<<

=0

16 tháng 2 2017

minh nghi la bang 0 neu dung k cho minh nhe

Tổng các hệ số là:
A(1)=(3-4+1)^2004*(3+4+1)^2005=0

12 tháng 6 2021

\(A\left(x\right)=\left(3-4+x^2\right)^{2004}\left(3+4x+x^2\right)^{2005}\)

Đa thức `A(x)` sau khi bỏ dấu ngoặc:

\(A\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)

Với `n = 2 . 2004 + 2 . 2005 = 8018`

Ta thay `x = 1` thì \(A\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\)

`=> A(1)` là tổng các hệ số của `A(x)` khi bỏ dấu ngoặc

Ta có: \(A\left(1\right)=\left(3-4.1+1^2\right)^{2004}\left(3+4.1+1^2\right)^{2005}\)

\(=0^{2004}.8^{2005}=0\)

Vậy tổng các hệ số của đa thức `A(x)` nhận được sau khi bỏ dấu ngoặc là `0`

12 tháng 6 2021

vì sao lại có anxn+an-1xn01 thế

Bài 6:

Tổng các hệ số của đa thức A(x) khi khai triển sẽ bằng với giá trị của A(x) khi x=1

=>Tổng các hệ số khi khai triển là:

\(A\left(1\right)=\left(3-4+1\right)^{2004}\cdot\left(3+1+1\right)^{2005}=0\)

 

4 tháng 9 2023

cảm on vui

Bài khó đến lớp 8 như mình còn ko bít làm thì ai làm hộ bạn đc

26 tháng 11 2021

ko có thời gian

21 tháng 8 2023

Bài 10:

Gọi \(n=2a-1\left(a\in N,a>1\right)\)

Có: \(A=1+3+5+7+...+\left(2a-1\right)\)

\(=\dfrac{1+\left(2a-1\right)}{2}.a=a^2\)

Vậy A là số chính phương

21 tháng 8 2023

thank you vui