Cho A = \(^{3^1+3^2+3^3+...+3^{2015}}\). Tìm n biết rằng: 2A + 3 =\(3^n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2a)
ta co: A=3^0+3^1+3^2+...........+3^2009
=>2A=3^1+3^2+3^3+...........+3^2010
=>2A=3^2010-3^0=3^2012-1
=>2A<3^2010
Ta có: 3A=32+33+...+3101
3A-A=2A=(32+33+...+3101)-(3+32+...+3100)
2A=3101-3
A=\(\frac{3^{101}-3}{2}\)
=>2A+3=2.\(\frac{3^{101}-3}{2}\)+3
=(3101-3)+3
=3101
Mà 2A+3=3n
=>3101=3n
=>n=101
A=3+32+33+...+3100
2A=(3+32+33+...+3100)x2
2A=32+33+34...+3101
2A-A=3101-3
mà 3n=2A+3=3101-3+3=3101
suy ra n=101
có A=3+3^2+3^3+..+3^100
3A=3.3+3^2.3+3^3.3+..+3^100.3
3A=3^2+3^3+3^4+..+3^101
⇒2A=(3^2+3^3+3^4+..+3^101)-(3+3^2+3^3+..+3^100)
2A=3^101-3
LẤY 3^101-3+3=3^n
3^101=3^n
⇒n=101
Ta có (1)
(2)
Lấy (2) trừ (1) được .
Do đó,
Mà theo đề bài .
Vậy .
=>3A=32+32+…+3101
=>3A-A=32+33+…+3101-3-32-…-3100
=>2A=3101-3
=>2A+3=3101=3N
=>N=101
Vậy N=101
3A = \(3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)\)- \(\left(3+3^2+3^3+..+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\Rightarrow2A+3=3^{101}\)
Vậy n = 101
A = 31+32 + 33+...32015
\(\Rightarrow\)3A= 32 + 33+...+32016
\(\Rightarrow\)2A = 3A -A = 32016 -3
\(\Rightarrow\)2A +3 = 32016
vậy n = 2016
Ta có :
A= 31+32+33+34+....+32015
=>3A= 32+33+34+35+....+32016
=>3A- A=(32+33+34+35+....+32016) - (31+32+33+34+....+32015)
=>2A=32016-3
=>2A +3 =32016
Vậy n = 2016