K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2022

M N P I K A B

a/ Xét tg vuông MKA và tg vuông MKI có

MK chung

\(\widehat{KMA}=\widehat{KMI}\) (gt)

=> tg MKA = tg MKI (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

b/

Ta có tg MKA = tg MKI (cmt) \(\Rightarrow\widehat{MKA}=\widehat{MKI}\)

\(\widehat{AKP}=\widehat{IKB}\)

\(\Rightarrow\widehat{MKA}+\widehat{AKP}=\widehat{MKI}+\widehat{IKB}\Rightarrow\widehat{MKP}=\widehat{MKB}\) (1)

Ta có tg MKA = tg MKI (cmt) \(\Rightarrow\widehat{PMK}=\widehat{BMK}\) (2) 

Xét tg MPK và tg MBK

có MK chung (3)

Từ (1) (2) (3) => tg PMK = tg BMK (g.c.g)

=> MB=MP => tg MBP cân tại M

Mà  MK là phân giác của \(\widehat{IMP}\) (gt)

\(\Rightarrow MK\perp BP\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao) (4)

Ta có

tg MKA = tg MKI (cmt) => MI=MA => tg MIA cân tại M

Mà MK là phân giác của \(\widehat{IMP}\) (gt)

\(\Rightarrow MK\perp IA\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao) (5)

Từ (4) và (5) => IA//BP (cùng vuông góc với MK)

 

 

1: Xét ΔMIK vuông tại I và ΔMAK vuông tại A có

MK chung

góc IMK=góc AMK

=>ΔMIK=ΔMAK

=>góc IKM=góc AKM

=>KM là phân giác của góc AKI

2: KI=KA

KA<KP

=>KI<KP

3: Xét ΔMBP có

PI,BA là đường cao

PI cắt BA tại K

=>K là trực tâm

=>MK vuông góc PB

MI=MA

KI=KA

=>MK là trung trực của AI

=>MK vuông góc AI

=>AI//PB

3 tháng 5 2019

a, xét tam giác INM và tam giác IEM có : IM chung

góc INM = góc IEM = 90 d0....

góc NMI = góc EMI do MI là phân giác của góc NMP (gt)

=> tam giác INM = tam giác IEM (ch - gn)

=> IN = IE và MN = ME (đn)

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔNMK có NM=NK

nên ΔNMK cân tại N

mà \(\widehat{MNK}=60^0\)

nên ΔNMK đều

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔMNK có NM=NK

nên ΔMNK cân tại N

Xét ΔMNK cân tại N có \(\widehat{MNK}=60^0\)

nên ΔMNK đều

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)

10 tháng 1 2022

a, xét tam giá HNM và tam giác MNP có chung :

góc MNP

cạnh MN 

cạnh NI của tam giác HNM nằm trên cạnh NP của tam giác MNP 

=> tam giác HNM đồng dạng MNP (c-g-c)

b,

áp dụng đ/l pytago vào tam giác vuông MNP :

=>NP=15cm 

MH.NP =NM.MP

MH.15=9.12

=>MH=7,2cm

áp dụng đl pytago vào tam giác vuông MNH ( NHM = 90\(^o\)):

=>NH=5,4cm

HP=NP-NH

HP=15-5,4=9,6cm

c, 

vì MI là phân giác của góc M 

=> MI là trung tuyến của tam giác MNP nên:

NI=IP 

mà NI+IP=15cm

=> NI=IP =7,5cm

12 tháng 5 2017

a) tam giác MNP có MN=MP(GT) suy ra tam giác MNP cân tại M (ĐỊNH nghĩa tam giác cân)

b) xét tam giác MNI và MPI có 

    MI chung 

    MN=MP(GT)

    IN=IP(MI là trung tuyến nên I là trung điểm NP)

SUY ra tam giác MNI=MPI(C-C-C)

c) Vì tam giác MNP cân tại M(cmt)màMI là đường trung tuyến nên MI đồng thời cũng là đường cao đường trung trực hay MI là đường trung trực của NP (tính chất tam giác cân)

d)Vì MI là đường cao tam giác MNP(cmt) suy ra MI vuông góc với NP suy ra tam giác MNI vuông tại I

   Vì MI là đường trung tuyến nên I là trung điểm NP suy ra NI=1/2NP

    Mà NP=12cm(gt) suy ra NI=12x1/2=6cm

   xét tam giác vuông MNI có

    NM2=NI2+MI2(ĐỊNH LÍ Py-ta-go)

   Suy ra MI2=NM2-NI2

 mà NM=10CM(gt) NI=6CM(cmt)

suy ra MI2=102-62=100-36=64=căn bậc 2 của 64=8

mà MI>0 Suy ra MI=8CM (đpcm)

ế) mik gửi cho bn bằng này nhé 

12 tháng 5 2017

a) Vì MN=MP => tam giác MNP là tam giác cân tại M.

b)Xét tam giác MIN và tam giác MIP có:

           MN=MP (vì tam giác MNP cân)

           \(\widehat{MNP}=\widehat{MPI}\)(tam giác MNP cân)

            NI=PI(vì MI là trung tuyến)

=> tam giác MIN=tam giác MIP(c.g.c)

c) Ta có: MN=MP

              IN=IP

=> M,I thuộc trung trực của NP

Hay MI là đường trung trực của NP

d) IN=IP=NP/2=12/2=6(cm)

Xét tam giác MIN có góc MIN =90*

 =>  MN^2=MI^2 + NI^2

 =>  MI^2=MN^2-NI^2

 =>  MN^2 = 10^2 - 6^2

 =>  MN = 8

e) Tam giác HEI có goc IHE=90*

 => góc HEI + góc HIE= 90*

Mà góc HIE = góc MEF/2

 => góc MEF/2 + góc HEI = 90*   (1)

Mà góc MEF + góc HEI + góc IEF = 180*

 => góc MEF/2 + góc IEF = 90*     (2)

  Từ (1) và (2)   =>  góc HEI = góc IEF

Hay EI là tia phân giác của góc HEF

a: NP=căn 3^2+4^2=5cm

b: Xét ΔNMK vuông tại M và ΔNHK vuông tại H có

NK chung

góc MNK=góc HNK

=>ΔNMK=ΔNHK

c: Xét ΔKMI vuông tại M và ΔKHP vuông tại H có

KM=KH

góc MKI=góc HKP

=>ΔKMI=ΔKHP

=>KI=KP

=>KP>MI