K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 8 2022

\(=\dfrac{\sqrt{a}\left(\sqrt{ab}+1\right)-\sqrt{b}\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)

\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)

\(=\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}-1}\)

10 tháng 10 2018

Bạn làm đc bài này chưa chỉ mình với

a: \(=6\sqrt{a}+\dfrac{1}{3}\sqrt{a}-3\sqrt{a}+\sqrt{7}=\dfrac{10}{3}\sqrt{a}+\sqrt{7}\)

b: \(=5a\cdot5b\sqrt{ab}+\sqrt{3}\cdot2\sqrt{3}\cdot ab\sqrt{ab}+9ab\cdot3\sqrt{ab}-5b\cdot9a\sqrt{ab}\)

\(=25ab\sqrt{ab}+12ab\sqrt{ab}+27ab\sqrt{ab}-45ab\sqrt{ab}\)

\(=19ab\sqrt{ab}\)

c: \(=\dfrac{\sqrt{ab}}{b}+\sqrt{ab}-\dfrac{a}{b}\cdot\dfrac{\sqrt{b}}{\sqrt{a}}\)

\(=\sqrt{ab}\left(\dfrac{1}{b}+1\right)-\dfrac{\sqrt{a}}{\sqrt{b}}\)

\(=\sqrt{ab}\)

d: \(=11\sqrt{5a}-5\sqrt{5a}+2\sqrt{5a}-12\sqrt{5a}+9\sqrt{a}\)

\(=-4\sqrt{5a}+9\sqrt{a}\)

a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)

\(=a-1\)

b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)

c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)

27 tháng 8 2021

a) \(\sqrt{4\left(a-3\right)^2}=2\left(a-3\right)=2a-6\)

b) \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)

c) \(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{\sqrt{8}\left|a\right|}=\dfrac{1}{-\sqrt{8}a}=\dfrac{-\sqrt{8}}{8a}\)

a: \(\sqrt{4\left(a-3\right)^2}=2\cdot\left(a-3\right)=2a-6\)

b: \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)

c: \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\sqrt{\dfrac{2}{16a^2}}=-\dfrac{\sqrt{2}}{4a}\)

 

a: \(=4\left|a-3\right|=4\left(a-3\right)=4a-12\)

b: \(=9\cdot\left|a-9\right|=9\left(9-a\right)=81-9a\)

c: \(a^3b^6\cdot\sqrt{\dfrac{3}{a^6b^4}}=a^3b^6\cdot\dfrac{\sqrt{3}}{-a^3b^2}=-b^4\sqrt{3}\)

d: \(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{a-b}\)

\(=\dfrac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)

13 tháng 7 2018

b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)

\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)

\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)

\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)

\(VT=0=VP\)

20 tháng 6 2018

Câu a

\(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)

\(=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)

\(=\left(\sqrt{a}+\sqrt{b}\right):\dfrac{1}{\sqrt{a}-\sqrt{b}}\)

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{1}\)

\(=a-b\)

1: \(Q=\dfrac{ab\left(a-b\right)}{ab}\cdot\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\left(\sqrt{a}+\sqrt{b}\right)^2=a+2\sqrt{ab}+b\)

2: \(=\dfrac{-1+\sqrt{5}-\sqrt{5}+\sqrt{9}-...-\sqrt{2001}+\sqrt{2005}}{4}\)

\(=\dfrac{\sqrt{2005}-1}{4}\)

21 tháng 10 2018

a) \(\sqrt{16x-8}+\sqrt{36x-18}-\sqrt{64x-32}=\sqrt{10}\)

\(\Leftrightarrow\sqrt{8\left(2x-1\right)}+\sqrt{18\left(2x-1\right)}-\sqrt{32\left(2x-1\right)}=\sqrt{10}\)

\(\Leftrightarrow\sqrt{8}.\sqrt{2x-1}+\sqrt{18}.\sqrt{2x-1}-\sqrt{32}.\sqrt{2x-1}=\sqrt{10}\)

\(\Leftrightarrow\sqrt{2x-1}.\left(\sqrt{8}+\sqrt{18}-\sqrt{32}\right)=\sqrt{10}\)

\(\Leftrightarrow\sqrt{2x-1}.\sqrt{2}=\sqrt{10}\)

\(\Leftrightarrow\sqrt{2x-1}=\sqrt{5}\)

\(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow x=3\)

Vậy ...

b) \(\sqrt{x^2-6x+9}=x+3\)

\(\Leftrightarrow\sqrt{x^2-2.x.3+3^2}=x+3\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=x+3\)

\(\Leftrightarrow\left|x-3\right|=x+3\)

\(\Leftrightarrow x-3=x+3\) hoặc \(x-3=-x-3\)

\(\Leftrightarrow x=0\)

Vậy ...

21 tháng 10 2018

bài 2 :

A = \(\left(\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{4\sqrt{ab}}{a-b}\right)\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}-\left(a+b\right)}\right)\)

\(=\left(\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{4\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a+\sqrt{b}}\right)}\right)\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}-\left(a+b\right)}\right)\)

\(=\left(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right)\left(\dfrac{\sqrt{a^3}+\sqrt{b^3}}{\sqrt{ab}-a-b}\right)\)

\(=\left(\dfrac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right)\left(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{-a+\sqrt{ab}-b}\right)\)

\(=\dfrac{a-2\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}.\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{-\left(a-\sqrt{ab}+b\right)}\)

\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}.\left(-\left(\sqrt{a}+\sqrt{b}\right)\right)\)

\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right).\left(-1\right).\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}\)

\(=-\left(\sqrt{a}-\sqrt{b}\right)=\sqrt{b}-\sqrt{a}\)

cuối cùng cũng xong, mong bn phù hộ độ trì cho mkgianroi

3 tháng 12 2018

\(VT=\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)=a-b\)

3 tháng 12 2018

c.ơn

23 tháng 7 2017

Bunyakovsky:

\(\sqrt{a+b}+\sqrt{a-b}\le\sqrt{2.2a}=2\sqrt{a}\)