K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

4/25=2^2/5^2=(2/5)^2

=> x+1/2=2/5=> x=2/5-1/2=>x=-1/10

Hoac

=> x+1/2=-2/5=> x=-1/2-2/5=-7/10

3 tháng 8 2021

ý là thế này hả bn?

(R1ntR2)//(R3ntR4)

a,\(=>Rtd=\dfrac{\left(R1+R2\right)\left(R3+R4\right)}{R1+R2+R3+R4}=\dfrac{\left(10+15\right)\left(10+25\right)}{10+15+10+25}=\dfrac{175}{12}\left(om\right)\)

b,\(=>U12=U34=36V\)

\(=>I12=I1=I2=\dfrac{U12}{R12}=\dfrac{36}{10+15}=1,44A\)

\(=>I34=I3=I4=\dfrac{U34}{R34}=\dfrac{36}{10+25}=\dfrac{36}{35}A\)

Ta có: x=100

nên x+1=101

Ta có: \(f\left(x\right)=x^8-101x^7+101x^6-101x^5+...+101x^2-101x+25\)

\(=x^8-x^7\left(x+1\right)+x^6\left(x+1\right)-x^5\left(x+1\right)+...+x^2\left(x+1\right)-x\left(x+1\right)+25\)

\(=x^8-x^7-x^7+x^7+x^6-x^6-x^5+x^5-x^4+...+x^3+x^2-x^2-x+25\)

\(=-x+25\)

\(=-100+25=-75\)

19 tháng 5 2022

hơi khó hỉu

23 tháng 7 2021

ĐK: `-x^4-2 >=0 <=>-(x^4+2) >=0 <=> x^4+2 <=0`

`x^4 >=0 <=>x^4+2>=2 >0 forallx`

Là "`-x^4`" chứ không phải "`(-x)^4`" ạ.

23 tháng 7 2021

Thế điều kiện để nó có nghĩa là gì bạn 

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

Dấu ngoặc và cuối là sai nhé bạn. Phải là ngoặc vuông (x=0 hoặc x=-8) mới đúng, vì x không thể nhận 2 giá trị khác nhau cùng lúc.

=>8(x+1/x)^2+4[(x+1/x)^2-2]^2-4[(x+1/x)^2-2](x+1/x)^2=(x+4)^2

Đặt x+1/x=a(a>=2)

=>8a^2+4[a^2-2]^2-4[a^2-2]*a^2=(x+4)^2

=>8a^2+4a^4-16a^2+16-4a^4+8a^2=(x+4)^2

=>(x+4)^2=16

=>x+4=4 hoặc x+4=-4

=>x=-8;x=0

29 tháng 10 2023

a) Thay x = 81 vào A ta có:

\(A=\dfrac{4\sqrt{81}}{\sqrt{81}-5}=\dfrac{4\cdot9}{9-5}=\dfrac{4\cdot9}{4}=9\)

b) \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{x+\sqrt{x}-2}\left(x\ne1;x\ge0\right)\)

\(B-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(B=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(B=\dfrac{x-4+\sqrt{x}-1+5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(B=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(B=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

c) \(\dfrac{A}{B}< 4\) khi

\(\dfrac{4\sqrt{x}}{\sqrt{x}-5}:\dfrac{\sqrt{x}}{\sqrt{x}+2}< 4\)

\(\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-5}< 4\)

\(\Leftrightarrow\dfrac{4\sqrt{x}+8-4\left(\sqrt{x}-4\right)}{\sqrt{x}-5}< 0\)

\(\Leftrightarrow\dfrac{24}{\sqrt{x}-5}< 0\)

\(\Leftrightarrow\sqrt{x}-5< 0\)

\(\Leftrightarrow x< 25\)

Kết hợp với đk: 

\(0\le x< 5\)

AH
Akai Haruma
Giáo viên
3 tháng 4 2020

Lời giải:

ĐK: $x\geq 0$

a)

Khi \(x=\frac{\sqrt{7-4\sqrt{3}}}{2}=\frac{\sqrt{4+3-2\sqrt{4.3}}}{2}=\frac{\sqrt{(2-\sqrt{3})^2}}{2}=\frac{2-\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\frac{(\sqrt{3}-1)^2}{2^2}\)

\(\Rightarrow \sqrt{x}=\frac{\sqrt{3}-1}{2}\)

\(\Rightarrow \left\{\begin{matrix} 4\sqrt{x}=2(\sqrt{3}-1)\\ (\sqrt{x}+1)^2=\frac{4+2\sqrt{3}}{4}\end{matrix}\right.\) \(\Rightarrow P=-20+12\sqrt{3}\)

b)

\(P=\frac{4\sqrt{x}}{(\sqrt{x}+1)^2}=\frac{1}{2}\)\(\Leftrightarrow 8\sqrt{x}=x+1+2\sqrt{x}\)

\(\Leftrightarrow x-6\sqrt{x}+1=0\)

\(\Leftrightarrow (\sqrt{x}-3)^2=8\Rightarrow \sqrt{x}-3=\pm 2\sqrt{2}\)

\(\Rightarrow \sqrt{x}=3-2\sqrt{2}\Rightarrow x=17\pm 12\sqrt{2}\)

(đều thỏa mãn)

AH
Akai Haruma
Giáo viên
3 tháng 4 2020

Lời giải:

ĐK: $x\geq 0$

a)

Khi \(x=\frac{\sqrt{7-4\sqrt{3}}}{2}=\frac{\sqrt{4+3-2\sqrt{4.3}}}{2}=\frac{\sqrt{(2-\sqrt{3})^2}}{2}=\frac{2-\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\frac{(\sqrt{3}-1)^2}{2^2}\)

\(\Rightarrow \sqrt{x}=\frac{\sqrt{3}-1}{2}\)

\(\Rightarrow \left\{\begin{matrix} 4\sqrt{x}=2(\sqrt{3}-1)\\ (\sqrt{x}+1)^2=\frac{4+2\sqrt{3}}{4}\end{matrix}\right.\) \(\Rightarrow P=-20+12\sqrt{3}\)

b)

\(P=\frac{4\sqrt{x}}{(\sqrt{x}+1)^2}=\frac{1}{2}\)\(\Leftrightarrow 8\sqrt{x}=x+1+2\sqrt{x}\)

\(\Leftrightarrow x-6\sqrt{x}+1=0\)

\(\Leftrightarrow (\sqrt{x}-3)^2=8\Rightarrow \sqrt{x}-3=\pm 2\sqrt{2}\)

\(\Rightarrow \sqrt{x}=3-2\sqrt{2}\Rightarrow x=17\pm 12\sqrt{2}\)

(đều thỏa mãn)

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Lời giải:

Em chỉ cần dựa vào định nghĩa về tập hợp thì có thể dễ dàng tìm được tập X

a)

\(X=\left\{3;4\right\}\)

\(X=\left\{1;3;4\right\}\)

\(X=\left\{2;3;4\right\}\)

\(X=\left\{1;2;3;4\right\}\)

b)

\(X=\left\{2\right\};X=\left\{4\right\}\)

\(X=\left\{2;4\right\}\)

25 tháng 8 2019

cô ơi tại sao ở câu a tập 1;2 và tập 1,2,3,4,5 không thuộc tập X ạ?

8 tháng 5 2021

TRẢ LỜI:

2x2-3x-2x2-4

ĐKXĐ: x ≠ 2 hoặc x ≠ -2

⇔ 2x2-3x-2=2x2-4 ⇔ 2x2-3x-2=2x2-8

⇔ 2x2-2x2-3x = - 8 + 2 ⇔ - 3x = - 6 ⇔ x = 2 (loại)

Vậy không có giá trị nào của x thỏa mãn điều kiện bài toán.

sai thui!

8 tháng 5 2021

Bn với rõ hơn đc ko. Khó nhìn quá