cho a/b=b/c=c/a và a+b+c khác 0 tính a^2010.c^5 tất cả phần b^2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\frac{a+b+c}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}a+b+c=0\\a=b=c\end{array}\right.\)
Từ đó tính được N
ta có a/b = b/c =c/a
áp dụng tính chất dãy tỉ số bằng nhau ta có
a/b =b/c = c/a = a+b+c / a+b+c =1 ( do a+b+c khác 0)
=> a =b , b=c , c=a
mà a= 2015 =>a=b=c =2015
áp dụng t/c của dãy tỉ số =nhau
=>2015/b=b/c=c/2015=(2015+b+c)/(b+c+2015)=1
2015/b=1=>b=2015
c/2015=1=>c=1/2015
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\Rightarrow1-\frac{b}{a}=1-\frac{d}{c}\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\)