Tong cac gia tri cua a và b khi đa thức P(x)=x3+ax2+bx+1 chia hết cho Q(x)=x2+3x+1
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DL
1
AH
Akai Haruma
Giáo viên
6 tháng 8 2021
Lời giải:
$A(x)=(x^3-x)+(ax^2-a)=x(x^2-1)+a(x^2-1)=(x+a)(x^2-1)$
$=(x+a)B(x)$
Do đó $A(x)$ luôn chia hết cho $B(x)$ với mọi $a$
K
1
19 tháng 4 2021
Do x = -1 là nghiệm của phương trình
⇒ a - b - 1 - 2 = 0
⇒ a - b = 3
Tương tự ta có a + b = 1
Vậy a = 2 ; b = -1
Để đa thức P(x)=x3+ax2+bx+1 chia hết cho Q(x)=x2+3x+1 thì:
\(\left(b-3a+8\right)x+\left(4-a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}b-3a+8=0\\4-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b-3a=-8\\a=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b-12=-8\\a=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=4\\b=4\end{cases}}\)
Vậy a = b = 4 thì đa thức P(x)=x3+ax2+bx+1 chia hết cho Q(x)=x2+3x+1