K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

Xét tam giác AMB và Tam giÁC CMN CÓ

AM=MC( gt)

BN=MN(gt)

góc AMB= góc NMC( đối đỉnh )

=> Tam giác AMB= tam giác CMN (c.g.g)

=>AB=NC ( cạnh tương ứng )

CN=4cm

20 tháng 11 2015

tick mình đi mình giải cho

30 tháng 4 2017

Bạn tự vẽ hình nhé!

a) Xét \(\Delta\)ABM và \(\Delta\)CNM, ta có:

AM=MC (gt)

\(\widehat{M_1}=\widehat{M_2}\) (đối đỉnh)

BM=MN (gt)

\(\Rightarrow\) \(\Delta\)ABM = \(\Delta\)CNM (c-g-c)

\(\Rightarrow\) AB=CN (2 cạnh tương ứng)

\(\Rightarrow\)\(\widehat{CAB}\) = \(\widehat{ACN}\) (2 góc tương ứng)

b) Ta có:

\(\widehat{CAB}\) = \(\widehat{ACN}\) (c/m trên) \(\Rightarrow\)\(\widehat{ACN}\) = 90o \(\Rightarrow\)\(NC\perp AC\) c) Xét \(\Delta\)ABC, ta có: \(\widehat{A}\) = 90o \(\Rightarrow\) Cạnh BC lớn nhất \(\Rightarrow\)BC>AB mà AB=CN \(\Rightarrow\)BC>CN d) Ta có: BM=MN (gt) nên BM+MN=BN=2.BM Xét tam giác BCN, ta có: BC+CN>BN=2.BM mà AB=CN (c/m trên) \(\Rightarrow\)BC+AB>2.BM \(\Rightarrow\)\(BM< \dfrac{AB+BC}{2}\) (đpcm)
5 tháng 10 2019

Bài 2:

a) Xét 2 \(\Delta\) \(ABM\)\(CNM\) có:

\(AM=CM\) (vì M là trung điểm của \(AC\))

\(\widehat{AMB}=\widehat{CMN}\) (vì 2 góc đối đỉnh)

\(BM=NM\) (vì M là trung điểm của \(BN\))

=> \(\Delta ABM=\Delta CNM\left(c-g-c\right).\)

=> \(AB=CN\) (2 cạnh tương ứng)

=> \(\widehat{BAM}=\widehat{NCM}\) (2 góc tương ứng)

Ta có: \(\widehat{BAM}+\widehat{NCM}=180^0\) (vì 2 góc kề bù)

\(\widehat{BAM}=90^0\left(gt\right)\)

=> \(90^0+\widehat{NCM}=180^0\)

=> \(\widehat{NCM}=180^0-90^0\)

=> \(\widehat{NCM}=90^0.\)

=> \(\widehat{BAM}=\widehat{NCM}=90^0\)

=> \(CN\perp AB.\)

b) Xét 2 \(\Delta\) \(AMN\)\(CMB\) có:

\(AM=CM\) (như ở trên)

\(\widehat{AMN}=\widehat{CMB}\) (vì 2 góc đối đỉnh)

\(MN=MB\) (như ở trên)

=> \(\Delta AMN=\Delta CMB\left(c-g-c\right)\)

=> \(AN=BC\) (2 cạnh tương ứng)

=> \(\widehat{ANM}=\widehat{CBM}\) (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AN\) // \(BC.\)

Chúc bạn học tốt!

5 tháng 10 2019

Hỏi đáp Toán