x+7/2020 + x+6/2021 + x+5/2022 giúp mik với c.ơn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A=x^2+4x+4=(x+2)^2.
Giờ ta tính giá trị của đa thức A với x=98:
A=(98+2)^2=100^2=10000
b) B=x^3+9x^2+27x+27=(x+3)^3.
Thế x=-103 => (-103+3)^3=-1000000
c) Tách C = a⋅b−a⋅c+2⋅c−2⋅b rồi kết hợp lại thành C=(a−2)⋅b+(2−a)⋅c.
Thế a,b,c vào được vậy
C=(2−2)⋅1.007+(2−2)⋅(−0.006) =0
d) Bài này khó quá mà tui nghĩ là đưa mấy cặp (2023^2-2022^2) thành dạng a^2-b^2=(a-b)(a+b) á
d: D=(2023^2-2022^2)+(2021^2-2020^2)+...+(3^2-2^2)+(1^2-0^2)
=2023+2022+...+3+2+1+0
=2023*2024/2=2047276
\(a,2^x+2^{x+3}=144\\ 2^x.\left(1+2^3\right)=144\\ 2^x.9=144\\ 2^x=144:9\\ 2^x=16=2^4\\ vậy:x=4\)
\(b,\left(x-5\right)^{2022}=\left(x-5\right)^{2021}\\ Vì:\left[{}\begin{matrix}0^{2022}=0^{2021}\\1^{2022}=1^{2021}\end{matrix}\right.\\ Vậy:\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
2020/2021<1
2021/2022<1
2022/2023<1
2023/2020=1+1/2020+1/2020+1/2020>1+1/2021+1/2022+1/2023
=>B>2020/2021+2021/2022+2022/2023+1/2021+1/2022+1/2023+1=4
\(2022\times2005-2000\times2022+15\times2022-20\times2021\)
\(=2022\times\left(2005-2000+15\right)-20\times2021\)
\(=2022\times20-20\times2021\)
\(=20\times\left(2022-2021\right)\)
\(=20\times1\)
\(=20\)
a, 2022 \(\times\) 2005 - 2000 \(\times\) 2022 + 15 \(\times\) 2022 - 20 \(\times\) 2021
= (2022 \(\times\) 2005 - 2000 \(\times\) 2022 + 15 \(\times\) 2022 )- 20 \(\times\) 2021
= 2022 \(\times\) (2005 - 2000 + 15) - 20 \(\times\) 2021
= 2022 \(\times\) (5 +15) - 20 \(\times\) 2021
= 2022 \(\times\) 20 - 20 \(\times\) 2021
= 20 \(\times\) (2022 - 2021)
= 20 \(\times\) 1
= 20
Lời giải:
PT $\Leftrightarrow (\frac{x+1}{2022}+1)+(\frac{x+2}{2021}+1)+...+(\frac{x+23}{2000}+1)=0$
$\Leftrightarrow \frac{x+2023}{2022}+\frac{x+2023}{2021}+...+\frac{x+2023}{2000}=0$
$\Leftrightarrow (x+2023)(\frac{1}{2022}+\frac{1}{2021}+...+\frac{1}{2000})=0$
Dễ thấy tổng trong () luôn dương
$\Rightarrow x+2023=0$
$\Leftrightarrow x=-2023$