Với ba số a,b,c không âm,chứng minh bất đẳng thức:
\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bất đẳng thức cô- si, ta có:
\(a+b\ge2\sqrt{ab}\) \(\left(1\right)\)
\(b+c\ge2\sqrt{bc}\) \(\left(2\right)\)
\(c+a\ge2\sqrt{ca}\) \(\left(3\right)\)
Cộng (1),(2),(3) vế theo vế, ta được:
\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
\(\Leftrightarrow\) \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Dấu " = " xảy ra <=> \(a=b=c\)
Áp dụng bất đẳng thức Cô-si cho hai số không âm, ta có :
\(\dfrac{a+b}{2}\ge\sqrt{ab}\) (1)
\(\dfrac{b+c}{2}\ge\sqrt{bc}\) (2)
\(\dfrac{c+a}{2}\ge\sqrt{ca}\) (3)
Cộng từng vế bất đẳng thức (1), (2), (3) ta được :
\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Vậy bất đẳng thức đã được chứng minh
Mở rộng cho bốn số a, b, c, d không âm, ta có bất đẳng thức :
\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)
Mở rộng cho năm số a, b, c, d, e không âm, ta có bất đẳng thức : \(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)
áp dụng BĐT AM-GM với 2 số không âm
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
cộng các vế của BĐT ta có
\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
chia cả hai vế của BĐT cho 2 ta có đpcm
áp dụng bất đẳng thức cô si cho:
*a+b≥\(2\sqrt{ab}\)
*b+c≥\(2\sqrt{bc}\)
*c+a≥\(2\sqrt{ca}\)
➩2(a+b+c)≥2(\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\))
➩ĐPCM
Ta có:
\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\Leftrightarrow2a+2b+2c\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt[]{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)
(luôn đúng với mọi a,b,c không âm)
Dấu bằng xảy ra \(\Leftrightarrow a=b=c\)
14:
\(A=\sqrt{-4x^2+4x+7}\)
\(=\sqrt{-\left(4x^2-4x-7\right)}\)
\(=\sqrt{-\left(4x^2-4x+1-8\right)}\)
\(=\sqrt{-\left(2x-1\right)^2+8}< =\sqrt{8}=2\sqrt{2}\)
Dấu = xảy ra khi 2x-1=0
=>\(x=\dfrac{1}{2}\)
13:
\(a+b+c>=\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
=>\(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ac}>=0\)
=>\(\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(a-2\sqrt{ac}+c\right)>=0\)
=>\(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)(luôn đúng)
Ta có : \(\frac{a+b}{2}\ge\sqrt{ab}\) (1)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(2)
Bất đẳng thức 2 luôn đúng với \(\forall x\),vậy nên bất đẳng thức 1 cũng luôn đúng với mọi x .
Dấu "=" xảy ra khi và chỉ khi \(\left(a-b\right)^2=0\)
=> a-b=0 => a=b
Vậy BDT \(\frac{a+b}{2}\ge\sqrt{ab}\) xảy ra khi a = b
áp dụng ta có :
\(\frac{a+b}{2}\ge\sqrt{ab}\left(1\right)\)
\(\frac{b+c}{2}\ge\sqrt{bc}\left(2\right)\)
\(\frac{a+c}{2}\ge\sqrt{ca}\) (3)
từ 1,2,3 cộng từng ba bất đẳng thức ta được : \(\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow\frac{a+b+b+c+c+a}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow\frac{2\left(a+b+c\right)}{a+b+c}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Mở rộng kết quả cho 4 số a,b,c,d không âm ta có bất đẳng thức :
\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)
Mở rộng kết quả cho 5 số a,b,c,d,e không âm ta có bất đẳng thức :
\(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)
Ta có: \(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng \(\forall a,b\ge0\))
Ta có: \(\frac{a+b}{2}\ge\sqrt{ab}\forall a,b\ge0\)
\(\frac{b+c}{2}\ge\sqrt{bc}\forall b,c\ge0\)
\(\frac{c+a}{2}\ge\sqrt{ac}\forall a,c\ge0\)
Do đó: \(\frac{a+b+b+c+c+a}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\forall a,b,c\ge0\)
\(\Leftrightarrow\frac{2\left(a+b+c\right)}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\forall a,b,c\ge0\)
\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\forall a,b,c\ge0\)(đpcm)
-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.
-Thôi, mình chịu rồi. Mình dùng tất cả các BĐT như Caushy, Schwarz, Caushy 3 số... nhưng không ra.
Lời giải:
Áp dụng BĐT AM-GM:
$\text{VT}=\sqrt{ab+c(a+b+c)}+\sqrt{bc+a(a+b+c)}+\sqrt{ca+b(a+b+c)}$
$=\sqrt{(c+a)(c+b)}+\sqrt{(a+b)(a+c)}+\sqrt{(b+a)(b+c)}$
$\leq \frac{c+a+c+b}{2}+\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}$
$=2(a+b+c)=2$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Đặt \(a=x^3,b=y^3,c=z^3\).Áp dụng bất đẳng thức Cô - si với 2 số không âm , ta có
\(\left(x^3+y^3\right)+\left(x^3+xyz\right)\ge2\sqrt{x^3y^3}+2\sqrt{xyz^4}=2\sqrt{xy}\left(xy+z^2\right)\)(1)
\(xy+z^2\ge2\sqrt{xyz^2}=2z\sqrt{xy}\)(2)
Từ (1)(2) \(\Rightarrow x^3+y^3+z^3+xyz\ge2\sqrt{xy}.2z\sqrt{xy}=4xyz\)
\(\Leftrightarrow x^3+y^3+z^3\ge3xyz\)
Vậy \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=z^2\end{cases}\Leftrightarrow x=y=z\Leftrightarrow a=b=c}\)
P/s tham khảo nha
áp dụng bđt Cosi cho các số a, b, c không âm, ta có:
\(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\left(1\right)\\a+c\ge2\sqrt{ac}\left(2\right)\\b+c\ge2\sqrt{bc}\left(3\right)\end{matrix}\right.\)
lấy (1) + (2) + (3) vế theo vế, ta được:
\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)\)
\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) (đpcm)