cho đoạn thẳng BC cố định có độ dài bằng 2a và 1 điểm a di động sao cho góc BAC =90 độ .gọi BM,CN là các đường trung tuyến của tam giác ABC
a, chứng minh BC2+CN2=5A2
B, Tìm điều kiện của tam giác ABC để BM+CN đạt giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo!
a) ∆ABC có M, N lần lượt là trung điểm của AC, AB (gt) nên MN là đường trung bình của tam giác => MN // BC
b) Tứ giác AKCI có hai đường chéo IK và AC cắt nhau tại trung điểm của mỗi đường (AM = MC, IM = MK) nên là hình bình hành
c) ∆ABC có BM và CN là hai đường trung tuyến và P là trung điểm của BC nên AP là đường trung tuyến thứ ba => A, I, P thẳng hàng
Mà A, I, D thẳng hàng nên I, P, D thẳng hàng (đpcm)
d) Tứ giác AKCI là hình bình hành có đường chéo AC là phân giác của góc IAK nên là hình thoi => AC vuông góc IK
Do đó tam giác ABC phải cân tại B (có BM là đường cao cũng là trung tuyến)
Ở câu a từ trung tuyến suy ra được trung điểm luôn ah bạn?