Cho số N = dcba. CMR
a. N⋮ 4 <=> (a+2b) ⋮ 4
b. N ⋮ 16 <=> ( a +2b + 4c +8d ) ⋮ với b chẵn
c. N ⋮ 29 <=> ( d +2c +9b +27a) ⋮ 29
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, dcba = 1000d +100c +10b +a=(1000d+96c+8b)+(a+2b+4c)
mà 100d +96c +8b chia hết cho 8
suy ra a+2b+4c chia hết cho 8(đpcm)
Ta có : \(n=\overline{dcba}=1000d+100c+10b+a\)
\(=\left(1000d+100c+8b\right)+\left(2b+a\right)\)
\(=4\left(250d+25c+2b\right)+\left(2b+a\right)\)
Vì n chia hết cho 4 và 4(250d+25c+2b) chia hết cho 4 nên a+2b chia hết cho 4.
câu b) tương tự, ta có :\(n=8\left(125d+12c+b\right)+\left(a+2b+4c\right)\)
mà n chia hết cho 8 ; 8(125d+12c+b) chia hết cho 8 => a+2b+4c chia hết cho 8.
câu c) : \(n=16\left(62d+6c+\frac{b}{2}\right)+\left(a+2b+4c+8d\right)\)
vì b chẵn => 16(62d+6c+b/2) chia hết cho 16 mà n chia hết cho 16; => a+2b+4c+8d chia hết cho 16.
Có 100(d+2c+9b+27d) - dbca chia hết cho 29
Vì (1000;29)=1 và dcba chia hết cho 29
=>d+2c+9b+29d chia hết cho 29
a/
\(\overline{dcba}⋮4\Rightarrow\overline{ba}⋮4\)
\(\overline{ba}=10b+a=8b+\left(2b+a\right)⋮4\)
Mà \(8b⋮4\Rightarrow2b+a⋮4\)
c/
\(\overline{dcba}=1000d+100c+10b+a=\)
\(=986d+14d+87c+13c+10b+a=\)
\(=\left(986d+87c\right)+\left(14d+13c+10b+a\right)⋮29\)
Mà \(986d+87c⋮29\Rightarrow14d+13c+10b+a⋮29\)
\(\Rightarrow28d+26c+20b+2a⋮29\)
\(\Rightarrow29\left(d+c+b+a\right)-\left(28d+26c+20b+2a\right)=\)
\(=d+3c+9b+27a⋮29\)