K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2021

a) \(-3x^3+5x^2-2x=0\\ \Leftrightarrow3x^3-5x^2+2x=0\\ \Leftrightarrow x\left(3x^2-5x+2\right)=0\\ \Leftrightarrow x\left(3x-2\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\\x=1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;\dfrac{2}{3};1\right\}\)

b) \(\dfrac{-1}{2}x^4+\dfrac{1}{8}x^2=0\\ \Leftrightarrow\dfrac{-1}{2}x^2\left(x^2-\dfrac{1}{4}\right)=0\\ \Leftrightarrow\dfrac{-1}{2}x^2\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;\dfrac{1}{2};\dfrac{-1}{2}\right\}\)

1 tháng 5 2018

ta có: H(x) = 5x^3 + 2 + 8x^2 - 8x^3 - 5x^2 - 6 - 3x^2

          H(x) = - ( 8x^3 - 5x^3) + ( 8x^2 - 5x^2 - 3x^2 ) - ( 6-2)

          H(x) = - 3 x^3 - 4

Cho H(x) = 0

=> - 3 x^3 - 4 = 0

       -3x^3      = 4

          x ^3 = -4/3

         

1 tháng 5 2018

H(x) = 5x+2+8x2-8x3-5x2-6-3x2

H(x) = ( 5x3 - 8x3 ) + ( 8x2 - 5x2 - 3x2 ) + ( 2 - 6 )

H(x) = -3x3 - 4

Để H(x) có nghiệm thì -3x3 - 4 = 0

\(\Rightarrow\)x3 = \(\frac{4}{-3}\)\(\Rightarrow\)x = \(\sqrt[3]{\frac{4}{-3}}\)

29 tháng 4 2016

+)đặt f(x)=3x2-5x+2=0

3x2-3x-2x+2=0

3x(x-1)-2(x-1)=0

(3x-2)(x-1)=0

3x=2 hoặc x=1

x=2/3 hoặc x=1

29 tháng 4 2016

+)đặt f(x)=3x^2-5x+2=0

3x^2-3x-2x+2=0

3x(x-1)-2(x-1)=0

(3x-2)(x-1)=0

=>x=2/3 hoặc x=1

P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025

=4x^2+5>=5>0 với mọi x

=>P(x) không có nghiệm

10 tháng 8 2023

cảm ơn bạn

 

25 tháng 5 2016

Giả sử g(x) = 0

=> 11x3 + 5x2 + 4x + 10 = 0

=> 10x3 + x3 + 4x2 + x2 + 4x + 10 = 0

=> (10x3 + 10) + (x3 + x2) + (4x2 + 4x) = 0

=> 10.(x3 + 1) + x2.(x + 1) + 4x.(x + 1) = 0

=> 10.(x + 1).(x2 - x + 1) + x2.(x + 1) + 4x.(x + 1) = 0

=> (x + 1).[10.(x2 - x + 1) + x2 + 4x] = 0

=> x + 1 = 0

=> x = -1 (Vì đề yêu cầu chỉ tìm 1 nghiệm nên xét 1 trường hợp)

Vậy 1 nghiệm của đa thức là -1.

25 tháng 5 2016

Nghiem của H(x) là :

-17\(x^3\)+8\(x^2\)-3x+12=0

(-17\(x^3\)+17\(x^2\))-(9\(x^2\)-9x)-(12x-12)=0

-17\(x^2\).(x-1)-9x(x-1)-12(x-1)=0

(x-1)(-17\(x^2\)-9x-12)=0

x-1=0 v -17\(x^2\)-9x-12<0 với mọi x

=> x=1

Vậy H(x) có 1 nghiệm x=1

 

19 tháng 4 2019

\(B\left(x\right)=x^5+3x^3+x=x\left(x^4+3x^2+1\right)=x\left(x^4+x^2+x^2+1+x^2\right)=x\left[x^2\left(x^2+1\right)+x^2+1+x^2\right]\)

\(=x\left[\left(x^2+1\right)\left(x^2+1\right)+x^2\right]=x\left[\left(x^2+1\right)^2+x^2\right]\)

Vì: \(x^2+1>0,x^2\ge0\)nên \(\left(x^2+1\right)^2+x^2>0\)

Vậy B(x)  có nghiệm khi x=0