tìm nghiệm của đa thức 3x^3+ 5x^2 - 8x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-3x^3+5x^2-2x=0\\ \Leftrightarrow3x^3-5x^2+2x=0\\ \Leftrightarrow x\left(3x^2-5x+2\right)=0\\ \Leftrightarrow x\left(3x-2\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\\x=1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;\dfrac{2}{3};1\right\}\)
b) \(\dfrac{-1}{2}x^4+\dfrac{1}{8}x^2=0\\ \Leftrightarrow\dfrac{-1}{2}x^2\left(x^2-\dfrac{1}{4}\right)=0\\ \Leftrightarrow\dfrac{-1}{2}x^2\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;\dfrac{1}{2};\dfrac{-1}{2}\right\}\)
ta có: H(x) = 5x^3 + 2 + 8x^2 - 8x^3 - 5x^2 - 6 - 3x^2
H(x) = - ( 8x^3 - 5x^3) + ( 8x^2 - 5x^2 - 3x^2 ) - ( 6-2)
H(x) = - 3 x^3 - 4
Cho H(x) = 0
=> - 3 x^3 - 4 = 0
-3x^3 = 4
x ^3 = -4/3
H(x) = 5x3 +2+8x2-8x3-5x2-6-3x2
H(x) = ( 5x3 - 8x3 ) + ( 8x2 - 5x2 - 3x2 ) + ( 2 - 6 )
H(x) = -3x3 - 4
Để H(x) có nghiệm thì -3x3 - 4 = 0
\(\Rightarrow\)x3 = \(\frac{4}{-3}\)\(\Rightarrow\)x = \(\sqrt[3]{\frac{4}{-3}}\)
+)đặt f(x)=3x2-5x+2=0
3x2-3x-2x+2=0
3x(x-1)-2(x-1)=0
(3x-2)(x-1)=0
3x=2 hoặc x=1
x=2/3 hoặc x=1
+)đặt f(x)=3x^2-5x+2=0
3x^2-3x-2x+2=0
3x(x-1)-2(x-1)=0
(3x-2)(x-1)=0
=>x=2/3 hoặc x=1
P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025
=4x^2+5>=5>0 với mọi x
=>P(x) không có nghiệm
Giả sử g(x) = 0
=> 11x3 + 5x2 + 4x + 10 = 0
=> 10x3 + x3 + 4x2 + x2 + 4x + 10 = 0
=> (10x3 + 10) + (x3 + x2) + (4x2 + 4x) = 0
=> 10.(x3 + 1) + x2.(x + 1) + 4x.(x + 1) = 0
=> 10.(x + 1).(x2 - x + 1) + x2.(x + 1) + 4x.(x + 1) = 0
=> (x + 1).[10.(x2 - x + 1) + x2 + 4x] = 0
=> x + 1 = 0
=> x = -1 (Vì đề yêu cầu chỉ tìm 1 nghiệm nên xét 1 trường hợp)
Vậy 1 nghiệm của đa thức là -1.
Nghiem của H(x) là :
-17\(x^3\)+8\(x^2\)-3x+12=0
(-17\(x^3\)+17\(x^2\))-(9\(x^2\)-9x)-(12x-12)=0
-17\(x^2\).(x-1)-9x(x-1)-12(x-1)=0
(x-1)(-17\(x^2\)-9x-12)=0
x-1=0 v -17\(x^2\)-9x-12<0 với mọi x
=> x=1
Vậy H(x) có 1 nghiệm x=1
\(B\left(x\right)=x^5+3x^3+x=x\left(x^4+3x^2+1\right)=x\left(x^4+x^2+x^2+1+x^2\right)=x\left[x^2\left(x^2+1\right)+x^2+1+x^2\right]\)
\(=x\left[\left(x^2+1\right)\left(x^2+1\right)+x^2\right]=x\left[\left(x^2+1\right)^2+x^2\right]\)
Vì: \(x^2+1>0,x^2\ge0\)nên \(\left(x^2+1\right)^2+x^2>0\)
Vậy B(x) có nghiệm khi x=0