Cho hbh ABCD . Đường thẳng đi qua D cắ ac tại I và BC ở N , cắt AB ở M
a)CM\(AM\cdot CN=BC\cdot CN\)
b)CM\(AM\cdot CN\)ko phụ thuộc vào vị trí của D
c)CM\(ID^2=IM\cdot IN\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAMB vuông tại M và ΔANC vuông tại N có
\(\widehat{NAC}\) chung
Do đó: ΔAMB∼ΔANC(g-g)
Suy ra: \(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Xét ΔAMN và ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)
\(\widehat{NAM}\) chung
Do đó: ΔAMN\(\sim\)ΔABC(c-g-c)
Suy ra: \(\widehat{AMN}=\widehat{ABC}\)(hai góc tương ứng)
b) Gọi giao điểm của AH và BC là K
Xét ΔCHK vuông tại K và ΔCBN vuông tại N có
\(\widehat{HCK}\) chung
Do đó: ΔCHK∼ΔCBN(g-g)
Suy ra: \(\dfrac{CH}{CB}=\dfrac{CK}{CN}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(CH\cdot CN=CB\cdot CK\)
Xét ΔBHK vuông tại K và ΔBCM vuông tại M có
\(\widehat{HBK}\) chung
Do đó: ΔBHK∼ΔBCM(g-g)
Suy ra: \(\dfrac{BH}{BC}=\dfrac{BK}{BM}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BH\cdot BM=BC\cdot BK\)
Ta có: \(BH\cdot BM+CH\cdot CN\)
\(=BC\cdot BK+BC\cdot CK\)
\(=BC^2=a^2\)(đpcm)
a: Sửa đề; AMCN
Xét tứ giác AMCN có
AM//CN
AM=CN
=>AMCN là hình bình hành
b:
Sửa đề: O là trung điểm của AC
AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của MN
c: Xét ΔOAI và ΔOCK có
góc OAI=góc OCK
OA=OC
góc AOI=góc COK
=>ΔOAI=ΔOCK
=>OI=OK
Xét tứ giác IMKN có
O là trung điểm chung của IK và MN
=>IMKN là hình bình hành
=>IM//NK
Đường thẳng qua D không có tính chất gì à?